

13585 N.E. Whitaker Way • Portland, OR 97230 Phone (503)255-5050 • Fax (503)255-0505 www.horizonengineering.com

Project No. 4212

Permit No. 11656

SOURCE EVALUATION REPORT

Saint-Gobain Containers, Inc. Seattle, Washington

Glass Melting Furnace No. 3
Total Chrome

Glass Melting Furnace No. 4
Nitrogen Oxides and Sulfur Dioxide

February 8, 2011

Test Site:
Saint-Gobain Containers, Inc.
5801 East Marginal Way S.
Seattle, Washington 98134

TABLE OF CONTENTS

	Page Number
1. CERTIFICATION	4
2. INTRODUCTION	5
3. SUMMARY OF RESULTS	7
4. SOURCE DESCRIPTION AND OPERATION	11
5. SAMPLING AND ANALYTICAL PROCEDURES	13
6. DISCUSSION	16
APPENDIX	
Abbreviations & Acronyms	17
Nomenclature & Drift Correction Documentation	19
Furnace No. 3: Total Chrome	
Total Chrome and Flow Rate Results	21
Example Calculations	25
Field Data	30
Sample Recovery Field Data and Worksheets	33
Laboratory Results and COC	35
Traverse Point Locations	52
Tedlar Bag Field Data (See Furnace 4 Field Data She	eet) 57
Furnace No. 4: SO ₂ and NO _x	
Results and Example Calculations	53
O ₂ & CO ₂ for Molecular Weight Determinations	56
Analyzer Calibration Field Data and QA Checks	57
Data Logger Gas Charts & Printouts	59
3-Point Stratification Check	66

67
70
70
73
75
76
81
83
84
87
30
95
96
102
105
106
110
119

1. CERTIFICATION

1.1 Test Team Leader

I hereby certify that the test detailed in this report, to the best of my knowledge, was accomplished in conformance with applicable rules and good practices. The results submitted herein are accurate and true to the best of my knowledge.

Name: Preston Skaggs

Signature

Date 2010317

1.2 Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: David Bagwell, QSTI

Signature

Date

1.3 Report Review

I hereby certify that I have reviewed this report and find it to be true and accurate, and in conformance with applicable rules and good practices, to the best of my knowledge.

Name: Michael E. Wallace, PE

Signature

Date

2. INTRODUCTION

2.1 Test Site: Saint-Gobain Containers, Inc.

5801 East Marginal Way S. Seattle, Washington 98134

2.2 Mailing Address: 1509 S. Macedonia Avenue

P.O. Box 4200

Muncie, IN 47307-4200

2.3 Test Log:

Glass Melting Furnace No. 3: Total Chrome

Test Date	Run No.	Test Time
February 8, 2011	1	07:56 - 09:56
II .	2	10:28 – 12:28
II	3	12:55 – 14:55

Summary: Three valid 120-minute runs

Glass Melting Furnace No. 4: NO_x and SO₂

Test Date	Run No.	Test Time
February 8, 2011	1	08:33 - 09:34
II .	2	10:19 – 11:20
II .	3	12:17 – 13:19
	4	13:47 – 14:48

Summary: Three valid runs (Run 1 was discarded due to a melted sample line)

2.4 Test Purpose: Compliance with Permit No. 11656. NO_x and SO₂ testing for Furnace No. 4 was done in accordance with the Global Consent Decree (GCD) that was entered on May 7, 2010, negotiated between Saint- Gobain Containers, Inc., the EPA and affected states. Chrome testing for Furnace No. 3 was done to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants for Glass Manufacturing Area Sources, <u>40 CFR Part 63</u>, Subpart SSSSS for affected sources. SGCI previously tested Furnace 3 for chromium and demonstrated compliance with the National Emission Standard for

****** HORIZON ENGINEERING ******

Hazardous Air Pollutants for Glass Manufacturing Area Sources, <u>40 CFR Part 63</u>, Subpart SSSSS for affected sources. However, the earlier test was performed when the furnace was manufacturing the color *antique*. SGCI performed this subsequent test during the manufacture of *champagne green* colored glass which has a higher chromium input in the batch. Note that other furnaces have been tested when running *champagne green* and demonstrated compliance.

2.5 Background Information: None

2.6 Participants:

Horizon Personnel:

Preston Skaggs, Team Leader

Matt Busch, Matt Caron and Kyle R. Kline, Field Technicians

Michael E. Wallace, PE, Calculations and QA/QC

David Bagwell, QSTI, Report Review

Christopher D. Lovett, Technical Writer

Test Arranged by: Jayne Browning, Saint-Gobain Containers, Inc. Observers:

Plant Personnel: Marlon Trigg, Saint-Gobain Containers, Inc.

Agency Personnel: Gerry Pade, PSCAA

Test Plan Sent to: Gerry Pade, PSCAA

3. SUMMARY OF RESULTS

3.1 Table of Results:

Table 1

Furnace No. 3 – Total Chrome Test Results

Test Date: February 8, 2011	Units	Run 1	Run 2	Run 3	Average
Start Time		07:56	10:28	12:55	
End Time		09:56	12:28	14:55	
Sampling Time	minutes	120	120	120	120
Sampling Results					
Total Chrome					
Concentration	µg/dscm	619	971	1,040	878
Rate	lb/hr	0.039	0.060	0.065	0.054
Production-Based	lb/ton	0.0047	0.0073	0.0079	0.0066
Subpart SSSSS Limit	lb/ton				0.02
Sample Volume	dscf	67.6	66.0	67.2	66.9
Sample Volume	dscm	1.9	1.9	1.9	1.9
Percent Isokinetic	%	94	95	94	94
Sample Weight, Total	μg	1,185	1,814	1,987	1,662
O_2	%	20.0	19.9	19.8	19.9
CO_2	%	3.3	3.6	3.6	3.5
Source Parameters					
Flow Rate (Actual)	acf/min	28,400	27,300	28,200	28,000
Flow Rate (Standard)	dscf/min	16,700	16,400	16,600	16,500
Temperature	°F	389	377	389	385
Moisture	%	6.7	6.2	6.7	6.5
Process/Production Data					
Glass Pull Rate	ton/hr	8.18	8.18	8.18	8.18

 $\label{eq:Table 2} \mbox{Furnace No. 4 - SO}_2 \mbox{ and NO}_x \mbox{ Test Results}$

Test Date: February 8, 2011	Units	Run 2	Run 3	Run 4	Average
Start Time		10:19	12:17	13:47	
End Time		11:20	13:19	14:48	
Sampling Time	minutes	60	60	60	60
Gaseous Emissions					
SO ₂ Concentration	ppmv	32	30	30	31
Mass Rate	lbm-SO ₂ /hr	5.4	4.5	4.7	4.9
Production Based Rate	lbm-SO ₂ /ton	1.0	0.86	0.90	0.93
Permit Limit (GCD)					2.5
NO _x Concentration	ppmv	381	384	362	376
Mass Rate	lbm-NO _x /hr	46.6	42.4	40.9	43.3
Production Based Rate	lbm-NO _x /ton	8.9	8.1	7.8	8.2
Interim Emission Factor (GCD) lbm-NO _x /ton	1			14.4
Source Parameters					
Flow Rate (Actual)	acf/min	27,700	25,100	25,900	26,200
Flow Rate (Standard)	dscf/min	17,100	15,400	15,800	16,100
O_2	%	16.6	16.6	16.7	16.6
CO_2	%	3.8	3.7	3.6	3.7
Temperature	°F	363	365	366	364
Moisture	%	5.2	5.0	5.5	5.2
Process/Production Data					
Glass Pull Rate	ton/hour	5.26	5.26	5.26	5.26

3.2 Discussion of Errors and Quality Assurance Procedures: This table is taken from a paper entitled "Significance of Errors in Stack Sampling Measurements," by R.T. Shigehara, W.F. Todd and W.S. Smith. It summarizes the maximum error expressed in percent, which may be introduced into the test procedures by equipment or instrument limitations.

Measurement	% Max Error
Stack Temperature Ts	1.4
Meter Temperature Tm	1.0
Stack Gauge Pressure Ps	0.42
Meter Gauge Pressure Pm	0.42
Atmospheric Pressure Patm	0.21
Dry Molecular Weight Md	0.42
Moisture Content Bws (Absolute)	1.1
Differential Pressure Head ΔP	10.0
Orifice Pressure Differential ΔH	5.0
Pitot Tube Coefficient Cp	2.4
Orifice Meter Coefficient Km	1.5
Diameter of Probe Nozzle Dn	0.80

3.2.1 <u>Manual Methods</u>: QA procedures outlined in the test methods were followed, including equipment specifications and operation, calibrations, sample recovery and handling, calculations and performance tolerances.

On-site quality control procedures include pre- and post-test leak checks on the sampling system and pitot lines. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. The results of the leak checks for the test runs are on the Field Data sheets.

Thermocouples used to measure the exhaust temperature are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed.

****** HORIZON ENGINEERING ******

Thermocouples must agree within ±2°F with the refer ence thermometer. Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started or readings are taken. Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned. The results were within allowable tolerances. Pre- and post-test calibrations on the meter boxes are included with the report along with semi-annual calibrations of critical orifices, pitots, nozzles, and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators).

3.2.2 Continuous Analyzer Gas Sampling: The QA procedures from EPA Method 7E in Title 40 CFR Part 60, Appendix A, July, 2008 were done for O₂, CO₂ and SO₂ gas analyses. Analyzer system checks are noted on the Calibration Field Record sheet, with procedures documented in the QA/QC section in the Appendix. All calibration standards used in the testing were EPA Protocol 1. Certificates for the gas cylinders are included in the Appendix.

A stratification check was done on the exhaust of Furnace No. 4 and it was not found to be stratified as defined by EPA Method 7E. Gases were therefore sampled at a single point, the centroid, of the exhaust stack.

3.2.3 <u>Tedlar Bag Gas Sampling and Analysis</u>: The QA procedures from EPA Method 3/3A in <u>Title 40 CFR Part 60</u>, Appendix A, July, 2007 were followed for gas sampling and analysis. Analyzer system checks are noted on the Calibration Field Record sheet, with procedures documented in the QA/QC section of the Appendix. All calibration standards used in the testing were EPA Protocol 1. Gas certificates are in the Appendix.

4. SOURCE DESCRIPTION AND OPERATION

4.1 Process and Control Device Description and Operation:

There are four glass-melting furnaces at the Saint-Gobain plant in Seattle, WA. Furnace No. 3 is oxy-fuel fired, with oxygen gas being used to support combustion rather than ambient air. This process results in greater overall energy efficiency, improved energy transfer to the glass, and a significant reduction in NO_x emissions. The primary fuel source of Furnace No. 3 is natural gas with additional energy input from electricity delivered through electrodes immersed in the glass (electric boosting).

Furnace No. 4 is an end-port regenerative furnace and is air-fuel fired, also utilizing natural gas as its primary fuel source. As a regenerative furnace, its increased fuel efficiency is realized by utilizing the heat generated in the combustion process to preheat the air and fuel used in further combustion processes. Additionally, increased thermal efficiency is realized by the regenerative furnace in providing heat to the primary glass-melting process itself.

4.2 Test Ports: Both of the ducts were steel, circular, vertical, and without flow straighteners or extensions. Two ports were sampled at the Furnace No. 4 exhaust. Only one port was accessible for sampling on the exhaust duct of Furnace No. 3, therefore it did not meet EPA Method 1 Criteria.

Both ducts were sampled using the maximum number of traverse points indicated in EPA Method 1, 11.2.2, Figures 1-1 and 1-2. Port and traverse point locations are described and diagrammed on the Field Data sheets.

The exhaust ducts of Furnace Nos. 3 and 4 are tapered. The angles of taper of these two furnace exhausts are 3° and 5° respectively. Both ducts can be considered straight for meeting EPA Method 1 criteria as discussed in the EPA document, "Guidelines for Sampling in Tapered Stacks," by T.J. Logan and R.T. Shigehara (1978). According to this document, if the angle of the stack wall taper is less than 15° the duct is to be considered straight.

4.2.1 Individual Test Duct Characteristics:

Furnace No. 3 Furnace No. 4

Construction: Steel Construction: Steel

Shape: Circular (tapered) Shape: Circular

Size: 49 inches inside diameter Size: 40.25 inches inside diameter

Orientation: Vertical Orientation: Vertical

Flow straighteners: None Flow straighteners: None

Extension: None Extension: None

Cyclonic Flow: None expected Cyclonic Flow: No Cyclonic flow

Meets EPA Method 1 Criteria: No, expected

only 1 port is accessible for sampling Meets EPA Method 1 Criteria: Yes

4.2.2 Cyclonic Flow Check: Cyclonic flow checks were done at the exhausts of Furnaces 3 and 4 during previous testing on September 22, 2005. During the cyclonic flow check, null angles were measured using a digital protractor and it was verified that the average angle of flow was less than twenty degrees from vertical, indicating the absence of cyclonic flow.

4.3 Operating Parameters: Confidential batch composition information is not included in the official report, but will be provided to PSCAA as a supplementary enclosure.

4.4 Process Startups/Shutdowns or Other Operational Changes

During Tests: Process was continuous during testing.

5. SAMPLING AND ANALYTICAL PROCEDURES

5.1 Sampling Procedures:

5.1.1 <u>Sampling and Analytical Methods</u>: Testing was in accordance with procedures and methods listed in the Source Test Plan dated January 5, 2011 (see Correspondence Section in the Appendix), including the following: EPA Methods in 40 CFR Part 60, Appendix A, July 1, 2007.

Glass Melting Furnace No. 3

Flow Rate: EPA Methods 1 and 2 (pitot traverses w/PSCAA Method 29)

CO₂ and O₂: EPA Method 3/3A (integrated bag samples NDIR and

paramagnetic analyzers)

Moisture: EPA Method 4 (incorporated w/EPA Method 29)

Chrome: EPA Method 29 (isokinetic impinger technique with analysis

by ICP-OES/ICP-MS)

Glass Melting Furnace No. 4

Flow Rate: EPA Methods 1 and 2 (S-type pitot flow traverses) CO₂ and O₂: EPA Method 3A (NDIR and paramagnetic analyzers)

Moisture: EPA Method 4 (impinger train technique)

SO₂: EPA Method 6C (non-dispersive ultraviolet analyzer)

NO_x: EPA Method 7E (chemiluminescent analyzer)

5.1.2 Sampling Notes: None

5.1.3 Laboratory Analysis:

Analyte Laboratory

Chrome Columbia Analytical Services, Kelso, WA

5.2 Sampling Train Diagrams:

Figure 1 **EPA Method 29 Chrome Sample Train Diagram**

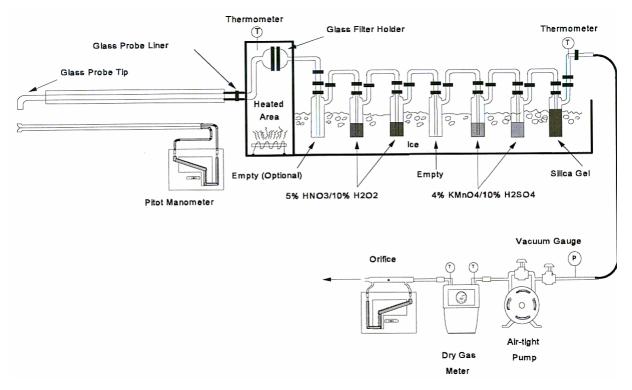
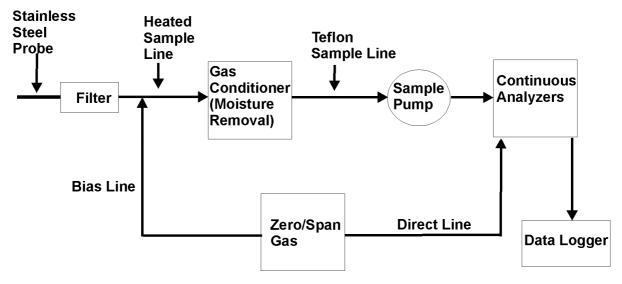



Figure 2 **EPA Methods 3A, 6C and 7E Analyzer Sample System Diagram**

****** HORIZON ENGINEERING ******

5.2.1 <u>Diagram Exceptions</u>: Impingers 4, 5 and 6 of the EPA Method 29 sampling train were not used (these are not necessary unless mercury is to be tested).

5.3 Horizon Test Equipment:

5.3.1 Manual Methods:

Equipment Name	Identification
Isokinetic Meter Boxes	CAE Express, Horizon No. 3 & No. 19
Inclined Liquid Manometers	Incorporated with meter boxes
Probe Liners	Borosilicate Glass
Pitots and Thermocouples	3s-1, 4-5, 5-5, PS-5H
Nozzles	0.2933, 0.2915
Barometer	Test Van III

5.3.2 CEM Analyzers and Methods:

Gas	Brand	Model	Cal. Span	Measurement Method	Method
O_2	Servomex	1400	22.22%	Paramagnetic	3/3A
CO_2	Servomex	1440	21.23%	Chopperless NDIR	3/3A
NO_x	Thermo Env	42i	968 ppm	Chemiluminescent	7E
SO_2	West. Resch	721M	48.5 ppm	Non-Dispersive Ultraviolet	6C

5.3.3 CEMS Sampling Setup:

CO₂, O₂, NO_x and SO₂ Sampling:

Sample Location: Fixed point near the centroid of the exhaust

Probe: Heated Stainless

Conditioning: Horizon 286 thermoelectrically cooled conditioner Sample Line(s): Teflon (heated to sample conditioner & unheated to

pump)

Pump: Teflon lined

Data Logger: Keithley (PC based) with Test Point software

5.3.4 Bag Sampling Setup:

Integrated Tedlar bag samples were taken from the orifice exhaust of the isokinetic meter box used for flow and moisture determinations during Furnace No. 3 testing. The bag contents were then analyzed using the instruments listed above.

6. DISCUSSION

The results of the testing should be valid in all respects. All quality assurance checks including leak checks, instrument checks, and calibrations, were within method-allowable tolerances.

Abbreviations & Acronyms

Abbreviations and Acronyms Used in the Report

AAC Atmospheric Analysis & Consulting, Inc.
ACDP Air Contaminant Discharge Permit

ADEC Alaska Department of Environmental Conservation

ADL Above Detection Limit

BAAQMD Bay Area Air Quality Management District
BACT Best Achievable Control Technology

BDL Below Detection Limit BHP Boiler Horsepower

BIF Boiler and Industrial Furnace

BLS Black Liquor Solids

C Carbon C_3H_8 Propane

CAS Columbia Analytical Laboratory
CEM Continuous Emissions Monitor

CEMS Continuous Emissions Monitoring System
CERMS Continuous Emissions Rate Monitoring System

CET Calibration Error Test
CFR Code of Federal Regulations

CGA Cylinder Gas Audit
CH₂O Formaldehyde
CH₄ Methane
Cl₂ Chlorine

CIO₂ Chlorine Dioxide

CNCG Concentrated Non-Condensable Gas

CO Catalytic Oxidizer

CO₂ Carbon Dioxide

COC Chain of Custody

CTM Conditional Test Method

CTO Catalytic Thermal Oxidizer

Dioxins Polychlorinated Dibenzo-p-dioxins (PCDD's)

DLL Detection Level Limited
DNCG Dilute Non-Condensable Gas
dscf Dry Standard Cubic Feet
EIT Engineer in Training

EPA Environmental Protection Agency

ESP Electrostatic Precipitator

EU Emission Unit

FID Flame Ionization Detector

Furans Polychlorinated Dibenzofurans (PCDF's)

GC Gas Chromatography

gr/dscf Grains Per Dry Standard Cubic Feet

H₂S Hydrogen Sulfide HAP Hazardous Air Pollutant HCI Hydrogen Chloride

HRSG Heat Recovery Steam Generator

IDEQ Idaho Department of Environmental Quality

lb/hr Pounds Per Hour

LRAPA Lane Regional Air Protection Agency
MACT Maximum Achievable Control Technology
MDI Methylene Diphyenyl Diisocyanate

MDL Method Detection Limit
MEK Methyl Ethyl Ketone

MeOH Methanol

MMBtu Million British Thermal Units
MRL Method Reporting Limit
MS Mass Spectrometry
MSF Thousand Square Feet

Abbreviations and Acronyms Used in the Report

NCASI National Council for Air and Steam Improvement

NCG Non-condensable Gases

NCUAQMD North Coast Unified Air Quality Management District

NDIR Non-dispersive Infrared

NESHAP National Emissions Standards for Hazardous Air Pollutants
NIOSH National Institute for Occupational Safety and Health
NIST National Institute of Standards and Technology

NMVOC Non-Methane Volatile Organic Compounds

NO_x Nitrogen Oxides

NPD Nitrogen Phosphorus Detector

O₂ Oxygen

ODEQ Oregon Department of Environmental Quality

ORCAA Olympic Region Clean Air Agency
PAHs Polycyclic Aromatic Hydrocarbons
PCWP Plywood and Composite Wood Products

PE Professional Engineer
PM Particulate Matter

Parts Per Billion by Volume ppbv Parts Per Million by Volume ppmv PS Performance Specification Puget Sound Clean Air Agency **PSCAA PSEL** Plant Site Emission Limits pounds per square inch psi PTE Permanent Total Enclosure PTM Performance Test Method

QA/QC Quality Assurance and Quality Control
QSTI Qualified Source Testing Individual

RA Relative Accuracy
RAA Relative Accuracy Audit

RACT Reasonably Available Control Technology

RATA Relative Accuracy Test Audit

RCTO Rotary Concentrator Thermal Oxidizer

RM Reference Method

RTO Regenerative Thermal Oxidizer
SCD Sulfur Chemiluminescent Detector
SCR Selective Catalytic Reduction System

SO₂ Sulfur Dioxide SOG Stripper Off-Gas

SWCAA Southwest Clean Air Agency

TAP Toxic Air Pollutant

TCA Thermal Conductivity Analyzer TCD Thermal Conductivity Detector

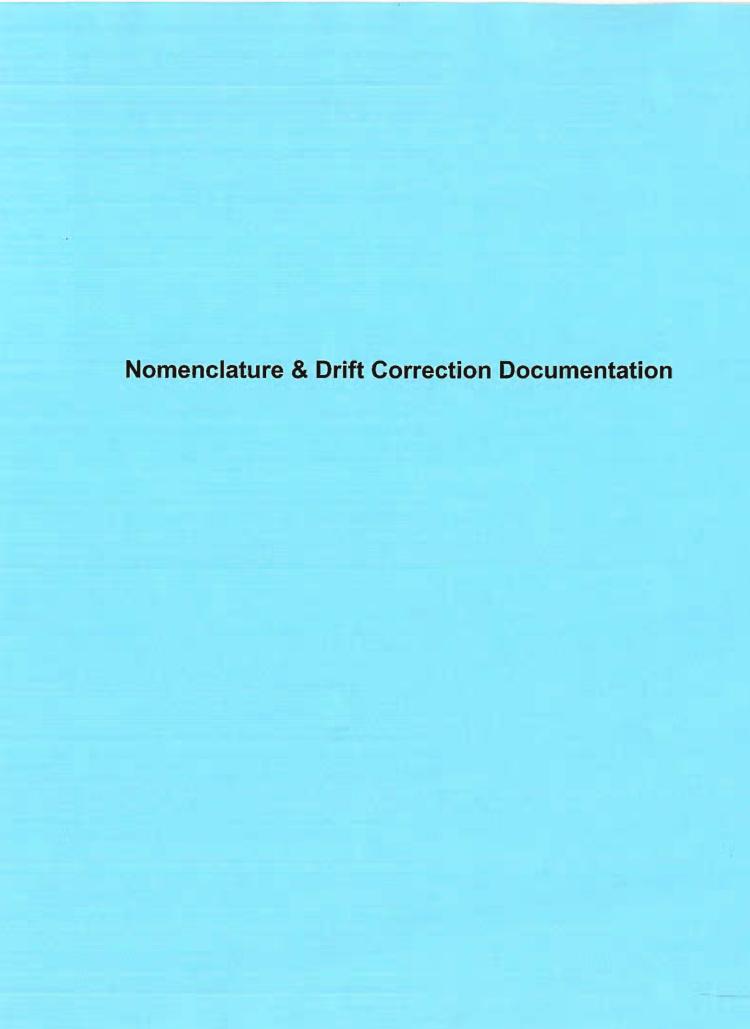
TGNMOC Total Gaseous Non-Methane Organic Compounds

TGOC Total Gaseous Organic Compounds

THC Total Hydrocarbon

TIC Tentatively Identified Compound

TO Thermal Oxidizer


TO Toxic Organic (as in EPA Method TO-15)

TPH Tons Per Hour
TRS Total Reduced Sulfur
TTE Temporary Total Enclosure

VE Visible Emissions

VOC Volatile Organic Compounds WC Inches Water Column

WDOE Washington Department of Ecology
WWTP Waste Water Treatment Plant

Nomenclature

Past	Constants	Value	Units	Definition	Ref
Taid	Pstd(1)	29.92126	3 inHg	Standard Pressure	CRC
Tell	Pstd(2)	2116.22	2 lbf / ft²		CRC
MAY-CLD	Tstd	527.67	7 °R	Standard Temperature	CRC
MAY-CO		1545.33	3 ft lbf / lbmol °R		CRC
MIN-CO	MW-atm	28.96456422	2 lbm / lbmole	Atmospheric (20.946 % O_2 , 0.033% CO_2 , Balance N_2 +Ar)	
MW-CQ,		12.011	lbm / lbmole		CRC
MW-HQC	MW-CO	28.0104	l ibm / lbmole	Carbon Monoxide	CRC
MM-VG	MW-CO₂	44.0098	3 lbm / lbmole	Carbon Dioxide	CRC
MM-SQ,	MW-H₂O	18.01534	lbm / lbmale	Water	CRC
MM-NS-Q,	MW-NO ₂	46.0055	5 ibm / lbmole	Nitrogen Dioxide	CRÇ
MW-N-1-1-N 28.154-807 Emri / Immole (Relance with 96.82% N. § 5.119% Ar) Emission belance Emission	_			•	CRC
SiAN-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	_			• •	CRC
Section Sect					5110
Symbol					
Symbol Units					
Symbol			_		Ref 2.5.1
An					
An				Calculating Equation of Source of Data	EPA
Swe					
C				I (DD \/\u\cid\ / I \/\u\datd\\\\\m\/std\ T	Eq. 6-3
C1				[100 Aw(ata)) [Aw(ata)+Au(ata) []	=q. 0−3
C2		':		(D. T-44 (D-14/2) 7	
Commons			Gas Constant @ Standard Conditions	•	
cg gridscf Grain Loading, Actual [15.432 mm / Vm(sigh) 1,000] Eq. cg@ XXSCQ, gridscf Grain Loading Corrected to X% Coxpen [20.948-X) (20.948-0₂)] Grain Loading Corrected to X% Coxpen [20.948-X) (20.948-0₂)] Cgas @ XXSCQ, ppmv Gas Concentration Correction to X% Coxpen [20.948-X) (20.948-0₂)] Cgas @ XXSCQ, ppmv Gas Concentration Correction to X% Coxpen [20.948-XX) (20.948-0₂)] Cgas @ XXSCQ, ppmv Gas Concentration Correction to X% Coxpen [20.948-XX) (20.948-0₂%)] Cgas @ XXSCQ, ppmv Gas Concentration Correction to X% Coxpen [20.948-XX) (20.948-0₂%)] Cgas @ XXSCQ, ppmv Carbon Monadde [20.948-XX] (20.948-0₂%)] Carbon Dioxide prover Coxpended Mass Emissions [60 cg Osd/7,000] CD file inter-Original Expension Rate [60 cg Osd/7,000] CD prover Spensore root of velocity pressure Ds in Diameter, Nozzia Mg/Y Average souser root of velocity pressure Ds in Diameter, Stack E in / MMBiu Palor for Various Fuels			Mana of pos mar well walves-		
Cag XX-CQ					Ea F O
Seg StXO_2			=		Eq. 5-8
Cgas		=	_	• • •	
Cgas @ X%CO2 ppmv		-		[(20.946-X)1(20.946-O ₂)]	
Cgas	-	ppmv, %			
Capts		ppmv			
Co	Cgas @ X%O ₂	ppmv	Gas Concentration Correction to X% Oxygen	[(20,946-X%)/(20,946-O ₂ %)]	
Co	Cgas	ppmv		Mges (lbm/hr) * 1,000,000*385.3211/60*Qsd*mw	
	CO	ppmv	Carbon Monaxide		
COp					
Cp	Cì	ft	Inner Circumference of Circular Stack		
Ct	CO ₂	%	Carbon Dioxide		
Ct	Ср		Pllot tube coefficient		
Dimelor, Nozzie Average square root of velocity pressure Dis		lb/hr	Particulate Mass Emissions	[60 cg Qsd/ 7,000]	
dp^\(\frac{1}{2}\) Average square root of velocity pressure	dH	in H₂O	Pressure differential across orifice		
dp^\(\frac{1}{2}\) Average square root of velocity pressure	Dn	in	Diameter, Nozzie		
Diameter, Stack Pollutent Emission Rate Cgss Fd MWgas (20.946 / (20.946-O ₂)) / (1,000,000 C1)					
Fd	•	lл			
Fd	E	ib / MMBtu	Pollutant Emission Rate	Cges Fd MWgas (20.946 / (20.946-O ₂)) / (1,000,000 C1)	
Md					Table 19-1
Mod	i .			[C2 Ts(abs) Vm(std) / (vs Ps mfg An Ø)]	Eq. 5-8*
mfg Mole fraction of dry stack gas [1-Bws/100] Mgas Ibm/hr Gaseous Mass Emisisons [60 Cgas(ppmv) MW Pstd(2) Qsd / 1,000,000 R Tstd] mn mg Particulate lab sample weight Ms Ibm / Ibmole Molecular Weight Wet Stack [Md mfg +MW-H ₂ O (1-mfg)] Eq. MW Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. MV Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. MW Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. MV Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. MV Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. MV Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. Pbr Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. Pbr Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. Pbr Ibm / Ibmole Pressure, Stack Robort [Md mfg +MW	Md	lbm / lbmole	Molecular weight, Dry Stack Gas		Eq. 3-1*
Mgas Ibm/hr Gaseous Mass Emilstons [60 Cgas(pprnv) MW Pstd(2) Qsd / 1,000,000 R Tstd] mn mg Particulate lab sample weight Ms lbm / Ibmole Molecular weight, Wet Stack [Md mfg +MW-H ₂ O (1-mfg)] Eq. MW Ibm / Ibmole Molecular Weight Meight Molecular Weight Meight Molecular Weight Meight		15117 16111616	• • •		-4
mn mg Particulate lab sample weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. MS Ibm / Ibmole Molecular weight, Wet Stack [Md mfg +MW-H ₂ O (1-mfg)] Eq. MW Ibm / Ibmole Molecular Weight [Md mfg +MW-H ₂ O (1-mfg)] Eq. NO2 ppmv-NO2 Nitrogen Oxides (Reported as NO2) Volvagen Vol		lbm/br			
MS				(
MW lbm / lbmole Molecular Weight NO2 ppmv-NO2 Nitrogen Dioxide (General Reporting Basis for NOx) NOX ppmv-NO2 Nitrogen Oxides (Reported as NO2) O2 % Oxygen OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute scross Orifice [Pbar + 0f / 13.5951] Eq. Qa act/min Volumetric Flowrate, Actual [As vs / 144] As vs / 144] Eq. Qas dcfinin Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps.] / [Pstd(1) Ts(abs.)] Eq. Qa act/min Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps.] / [Pstd(1) Ts(abs.)] Eq. Rf MMBtu/nr Journal of State of Ps. (Ps.)		_		[Md mfg +MW-H ₂ O (1-mfg)]	Eq. 2-5
NO2 ppmv-NO2 Nitrogen Dioxide (General Reporting Basis for NOx) NOX ppmv-NO2 Nitrogen Oxides (Reported as NO2) O2 % Oxygen OPC % Opacity Pbar In Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orfice [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Absolute Stack [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Dry Stendard [As vs / 144]				+	
NOx ppmv-NO2 Nitrogen Oxides (Reported as NO2) O2 % Oxygen OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orffice [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Actual [As vs / 144] [As vs / 144] [Qa t std mfg Ps] / [Pstd(1) Ts(abs)] Eq. Rf MMBtu/hr Volumetric Flowrate, Dry Standard [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq. SO2 ppmv-SO2 Sulfur Dioxide [Validation of the companies of a stack or duct [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq. TGOC ppmv-SO2 Sulfur Dioxide [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm, and the companies of a stack or duct [Tmm			<u> </u>		
O2 % Oxygen OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orfice [Pbar + dH / 13.5951] Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Actual [As vs / 144] [As vs /	-				
OPC % Opacity Pbar in Hg Pressure, Barometric Pg in Hg Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Actual {As vs / 144} Associated for the ps / [Pstd(1) Ts(abs)] Eq. Rf MMBtu/hr Volumetric Flowrate, Dry Stendard [Qa Tstd mfg Ps] [Pstd(1) Ts(abs)] Eq. SO2 ppmv-SO2 Sulfur Dioxide 1,000,000 Mgas (20.946-O2)] / [Cd Fd 20.946] Fd 20.946] SO2 ppmv-SO2 Sulfur Dioxide [Tm + 459.67] Fd 20.946-O2)] / [Cd Fd 20.946] TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm + 459.67] Fm 2 memperature, Absolute Dry Meter [Tm + 459.67] Ts *F Temperature, Absolute Stack gas [Ts + 459.67] Fd 20.946 Vic ml Volume of condensed water Volume of condensed water Ym Tstd Po [/ [Pstd/(1) Tm(abs)] Eq. Vm(std) <td></td> <td>., -</td> <td></td> <td></td> <td></td>		., -			
Pbar					
Pg in H₂O Pressure, Static Stack Po in Hg Pressure, Absolute across Orifice [Pbar + dH / 13.5951] Eq. Ps in Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Actual [As vs / 144] [Qa Tsitd mfg Ps] / [Pstd(1) Ts(abs)] Eq. Rf MMBtw/m 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] Eq. SO₂ ppmv-SO₂ Sulfur Dioxide 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] Eq. SO₂ ppmv-SO₂ Sulfur Dioxide Fermony Stack or duct Fermony Stack or duct </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Po					
P6 In Hg Pressure, Absolute Stack [Pbar + Pg / 13.5951] Eq. Qa act/min Volumetric Flowrate, Actual [As vs / 144] [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq. Rf MMBttu/hr 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] Eq. SO2 ppmv-SO2 Sulfur Dioxide [Pstd(1) Ts(abs)] Eq. t in Wall thickness of a stack or duct [Total Gaseous Organic Concentration (Reported as C) [Tm F Temperature, Dry gas meter [Tm + 459.67]		-			
Qa act/min Volumetric Flowrate, Actual {As vs / 144 } Qsd dsc//min Volumetric Flowrate, Dry Stendard [Qa Tstd mfg Ps] / [Pstd(1) Ts(abs)] Eq 3 Rf MMBtufinr 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] SO₂ ppmv-SO₂ Sulfur Dioxide 1,000,000 Mgas (20.946-Q₂)] / [Cd Fd 20.946] t in Wall thickness of a stack or duct 7 Total Gaseous Organic Concentration (Reported as C) Tm "F Temperature, Dry gas meter [Tm + 459.67] Ts "F Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Absolute Stack gas [Ts + 459.67] Vic ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/[Pstd(1) Tm(abs)] Eq. Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/[Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.					
Qaft dsci/min			•		Eq. 2-6*
Rf MMBlu/hr 1,000,000 Mgas (20.946-O₂)]/[Cd Fd 20.946] SO₂ ppmv-SO₂ Sulfur DioxIde t in Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm *F Temperature, Dry gas meter Tm(abs) *R Temperature, Absolute Dry Meter [Tm + 459.67] Ts *F Temperature, Absolute Stack gas [Ts + 459.67] Vic ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. Vm(std) dscf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.					
SO2 ppmv-SO2 Sulfur Dioxide t In Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm "F Temperature, Dry gas meter Tm(abs) "R Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Stack gas [Ts + 459.67] Vlc ml Volume, Gas sample [Ts + 459.67] Vm dcf Volume, Gas sample [Y Vm Tstd Po]*[Pstd(1) Tm(abs)] Eq. Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]*[Pstd(1) Tm(abs)] Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.		dscf/mln	Volumetric Flowrate, Dry Standard		Eq 2-10*
t in Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm "F Temperature, Dry gas meter Tm(abs) "R Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Stack gas Ts(abs) "R Temperature, Absolute Stack gas [Ts + 459.67] Vic ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. Vx fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Fig.	Rf	MMBtu/hr		1,000,000 Mgas (20.946-O ₂)]/[Cd Fd 20.946]	
t in Wall thickness of a stack or duct TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm "F Temperature, Dry gas meter Tm(abs) "R Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Stack gas Ts(abs) "R Temperature, Absolute Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. Vvs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Fig.	SO₂	ppmv-SO₂	Sulfur Dioxide		
TGOC ppmv-C Total Gaseous Organic Concentration (Reported as C) Tm *F Temperature, Dry gas meter Tm(abs) *R Temperature, Absolute Dry Meter [Tm + 459.67] Ts *F Temperature, Absolute Stack gas [Ts + 459.67] Vic ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]*[Pstd(1) Tm(abs)] Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.	t		Wall thickness of a stack or duct		
Tm °F Temperature, Dry gas meter Tm(abs) °R Temperature, Absolute Dry Meter [Tm + 459.67] Ts °F Temperature, Stack gas Ts(abs) °R Temperature, Absolute Stack gas [Ts + 459.67] Vic ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. Vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.	TGOC				
Tm(abs) "R Temperature, Absolute Dry Meter [Tm + 459.67] Ts "F Temperature, Stack gas Ts(abs) "R Temperature, Absolute Stack gas [Ts + 459.67] Vlc ml Volume of condensed water Vm dcf Volume, Gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. Y Dry gas meter calibration factor Fig.					
Ts				[Tm + 459.67]	
Ts(abs) °R Temperature, Absolute Stack gas [Ts + 459.67] VIc ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs)/ (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.				-	
Vic ml Volume of condensed water Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs)/ (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.				[Ts + 459.67]	
Vm dcf Volume, Gas sample Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vic Eq. Y Dry gas meter calibration factor Fig.					
Vm(std) dscf Volume, Dry standard gas sample [Y Vm Tstd Po]/ [Pstd(1) Tm(abs)] Eq. vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. Y Dry gas meter calibration factor Fig.					
vs fpm Velocity, Stack gas Kp Cp dp^½ [Ts(abs) / (Ps Ms)]^½ Eq. Vw(std) scf Volume, Water Vapor 0.04707 Vlc Eq. Y Dry gas meter calibration factor Fig.				[YVm Tstd Po]/[Pstd(1) Tm(abs)]	Eq. 5-1
Vw(std) scf Volume, Water Vapor 0.04707 VIc Eq. Y Dry gas meter calibration factor Fig.	. ,				Eq. 2-9*
Y Dry gas meter calibration factor Fig.					Eq. 5-2
					Fig. 5.6
nin nine, role aempe	ø	nin	Time, Total sample		

* Based on equation.

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505

DRIFT CORRECTION DOCUMENTATION

EPA Drift Equations:

- Method 3A: Oxygen and Carbon Dioxide, Follow Section 12.0 of Method 7E
- Method 6C: Sulfur Dioxide, Follow Section 12.0 of Method 7E
- Method 7E: Nitrogen Oxides, Section 12.0

$$C_{gas} = \frac{C_{ma}(C - C_o)}{(C_m - C_o)}$$
 (Eq. 7E-5b)

- Method 10: Carbon Monoxide, Follow Section 12.0 of Method 7E
- Method 25A: Total Gaseous Organic Concentration (TGOC), this method does not mention correcting for drift although there are established limits.

Horizon Engineering Drift Correction Equations:

$$C_{gas} = \frac{(C_{id} - Z_x)(C_{ma} - C_{oa})}{(S_x - Z_x)} \qquad S_x = \frac{(C_{mf} - C_{mi})(T_x - T_{ci})}{(T_{cf} - T_{ci})} + C_{mi}$$

$$Z_x = \frac{(C_{of} - C_{oi})(T_x - T_{ci})}{(T_{cf} - T_{ci})} + C_{oi} \quad T_x = \frac{(T_{ie} - T_{is})}{2} + T_{ts}$$

EPA	Definition	Horizon
C_{gas}	Effluent gas concentration, dry basis	C_{gas}
C_{mn}	Actual upscale calibration gas concentration	C_{ma}
C_{oa}	Actual zero/low calibration gas concentration	C_{on}
C _m	Average of initial and final system upscale calibration bias responses	
	Initial system upscale calibration bias response	C_{mi}
	Final system upscale calibration bias response	C_{mf}
Co	Average of initial and final system zero/low calibration bias responses	
	Initial system zero/low calibration bias response	C_{oi}
	Final system zero/low calibration bias response	C_{of}
C	Average gas concentration indicated by gas analyzer, dry basis	C_{id}
	Starting test time	T_{ts}
	Ending test time	T_{tc}
	Initial system bias calibration response time	T_{ci}
	Final system bias calibration response time	T_{cf}
	Mid-point of test time or gas sampling interval to be analyzed	T_x
	Approximate upscale response at mid-point test time	S_x
	Approximate zero/low response at mid-point test time	Z_x
	Carbon count of TGOC calibration gas. (CH ₄ =1, C ₃ H ₈ =3)	K
	Carbon response factor basis on a state basis (example Propane carbon basis)	R

Notes or exceptions:

TGOC is first recorded on a wet basis, then corrected to a dry basis

The TGOC instruments used by Horizon have some historic data on instrument response to different hydrocarbons.

06/02/10

Furnace No. 3: Total Chrome

Total Chrome and Flow Rate Results
Example Calculations
Field Data
Sample Recovery Field Data and Worksheets
Laboratory Results and COC
Traverse Point Locations
Tedlar Bag Field Data (See Furnace 4 Field Data Sheet)

EPA Method 29 Chrome Results - Total

Saint Gobain		8-Feb-11				
Furnace #3		TOTAL			PS	
Exhaust					4212	
Vm(std)	dscf	67.64	65.96	67.22	66.94	
	dscm	1.915	1.868	1.904	1.90	
Q(std)	dscf/min	16,704	16,368	16,577	16,549	
Time	min	120	120	120		
Oxygen	%	20.00	19.90	19.80	19.90	
RESULTS		Run 1	Run 2	Run 3	Average	
Chromium	ug	1,185	1,814	1,987	1,662	
CONCENTRATIO	NS	Run 1	Run 2	Run 3	Average	
Chromium	ug/m3	619	971	1,044	878	
MASS EMISSIONS	3	Run 1	Run 2	Run 3	Average	
Chromium	lbm/hr	0.0387	0.0595	0.0648	0.0544	
	lbm/ton	0.00473	0.00728	0.00792	0.006645	

EPA Method 29 Chrome Results - Front Half

Saint Gobain					8-Feb-11
Furnace #3		FRONT HALF			PS
Exhaust					4212
Vm(std)	dscf	67.64	65.96	67.22	66.94
	dscm	1.915	1.868	1.904	1.90
Q(std)	dscf/min	16,704	16,368	16,577	16,549
Time	\min	120	120	120	
Oxygen	%	20.00	19.90	19.80	19.90
RESULTS		Run 1	Run 2	Run 3	Average
Chromium	ug	1,110	1,810	1,980	1,633
CONCENTRAT	IONS	Run 1	Run 2	Run 3	
Chromium	ug/m3	579.5	969.0	1,040.1	862.9
MASS EMISSIO	NS	Run 1	Run 2	Run 3	
Chromium	lbm/hr	0.0363	0.0594	0.0646	0.0534
	lbm/ton	0.00443	0.00726	0.00790	0.006531

EPA Method 29 Chrome Results - Back Half

Saint Gob	ain				8-Feb-11	
Furnace #	3	BACK HA	L F		PS	
Exhaust					4212	
Vm(std)	dscf	67.64	65.96	67.22	66.94	
	dscm	1.915	1.868	1.904	1.90	
Q(std)	dscf/min	16,704	16,368	16,577	16,549	
Time	min	120	120	120		
Oxygen	%	20.00	19.90	19.80	19.90	
RESULTS		Run 1	Run 2	Run 3	Average	
Chromium	ug	75.400	3.900	6.700	28.667	
CONCENT	RATIONS	Run 1	Run 2	Run 3		
Chromium	ug/m3	39.367	2.088	3.520	14.992	
MASS EMI	SSIONS	Run 1	Run 2	Run 3	20 80 19.90 n 3 Average 700 28.667 n 3 20 14.992	
Chromium	lbm/hr	0.00246	0.00013	0.00022	0.00094	
	lbm/ton	0.00030	0.000016	0.000027	0.00011	

Flow Rate and Moisture

Client Source Location Saint Gobain Furnace #3 Exhaust 123429 2/8/11 Date PS Operator 4212

mew Analysist/QA

Symbol Units Run 1 Run 2 Run 3 Definitions Average 12:55 Time, Starting 7:56 10:28 9:56 12:28 14:55 Time, Ending 64,928 64.36 Vm def 64.405 63.739 Volume, Gas sample ٥F 65.02 62.60 65.19 Tm 57.60 Temperature, Dry gas meter ٥F 385.11 377.29 388.79 389.25 Temperature, Stack gas Ts 1.07 Pressure differential across orifice dH in H2O 1.090 1.026 1.092 dp^1/2 in H2O¹/₂ 0.522 0.494 0.518 Average square root velocity pressure 0.2915 0.2933 Diameter, Nozzle Dn 0.2933 in 0.8207 0.84 0.8207 Pitot tube coefficient Cp Y 1.01230 1.01230 1.01230 Dry gas meter calibration factor 30.35 30.35 Pressure, Barometric Pbar in Hg 30.35 in H2O -0.23-0.23-0.23Pressure, Static Stack Рg Time, Total sample Ø min 120 120 120 120 1,886 Stack Area As in^2 1,886 1,886 in² 0.0667 0.0676 Nozzle Area Αn 0.0676 99.38 92.4 102.4 Volume of condensed water Vlc ml 103.4 19.90 % O2 20.00 19.90 19.80 Oxygen % CO2 3.60 3.50 3.30 3.60 Carbon Dioxide 29.47 Md lbm / lbmole 29,45 29.49 29.49 Molecular weight, Dry Stack 30.33 30.33 30.33 30.33 Pressure, Absolute Stack Ps in Hg 30.43 30.43 30.43 Pressure, avg arcoss orifice Po in Hg 30.43 66.94 Volume, Dry standard gas sample Vm(std) dscf 67.64 65.96 67.22 4.35 4.82 4.68 Volume, Water Vapor Vw(std) scf 4.87 6.69 6.53 % 6.71 6.18 Moisture, % Stack (EPA 4) Bws(1) Moisture, % Stack (Psychrometry-Sat) Bws(2) % па กล na Moisture, % Stack (Theoretical) Bws(3) % па na na Moisture, % Stack (Psychrometry) Bws(4) % na na na Moisture, % Stack (Predicted) Bws(5) na па na Mole Fraction dry Gas mfg 93.3% 93.8% 93.3% 93.5% Molecular weight, Wet Stack Ms lbm / lbmole 28.68 28.78 28.72 28.73 2,084 2,152 2,135 Velocity, Stack gas ٧S fpm 2,170 27,963 acf/min 28,415 27,297 28,177 Volumetric Flowrate, Actual Qa Volumetric Flowrate, Dry Standard Osd dscf/min 16,704 16,368 16,577 16,549 % 94.2 94.9 94.3 94.5 Percent Isokinetic

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

Example Calculations
Client: Soint Goban Source Furnace No. 3
Client: Soint Gobam Source Furnace No. 3 Date 28 2011 Project # 4212 Run # 2
Metals Emissions – Mass Rate
Metal CT measured 1,814 µg
Sample Volume <u>65.96_</u> dscf Flow Rate <u>l 6,368_</u> dscf/min
Equation:
$lb - \underline{C\Gamma/hr} = \frac{measured\mu g * mg / 1000\mu g}{Sample Volume} * FlowRate * \frac{60 \min}{hr} * \frac{lb}{453592.37mg}$
Calculation:
$\frac{1.914 \mu_g * mg/1000 \mu_g}{65.96 dscf} * \frac{16.368 dscf}{min} * \frac{60 min}{hr} * \frac{1b}{453592.37 mg} = 0.0595 lb-Cr/hi$
מווו במונים אוו וווו אווו במונים אווו ווווו וווווע במונים אווווע במונים אוווע במונים אוווע במונים אוווע במונים אוווע

Client:	S	aint	Gobain	Sou	rce	Furnace No. 3	
Date 2	8	2011	Project # <u>4212</u>	Run #_	2	Page Z	

CHROMIUM CONCENTRATION. mg/dscm
$$\frac{1.814 \,\text{mg}}{65.96 \,\text{dscf}} \times \frac{19}{1000 \,\text{mg}} \times \frac{15.432 \,\text{gr}}{9} = 0.000424 \,\text{gr}$$
Measured Results, gr/dscf_0.000424

Equation:
$$CR$$
, $mg/dscm = Cr$, $gr/dscf \times \frac{lb}{7000gr} \times \frac{453,592mg}{lb} \times \frac{35.315cubicft}{cubicMeter}$

Calculation:
$$\frac{0.00424 \, Cr, gr/dscf \times \frac{lb}{7000gr} \times \frac{453,592mg}{lb} \times \frac{35.315 cubicft}{cubicMeter}}{-0.771 \, Cr, mg/dscm}$$

Sample Calculations, Additional Concentrations & Rates

Client:	S	ant	Gobain	Source	Furnace	No	3	
Date_2	18	2011	Project # 4212	Run#Z				_

Chromium Emissions Production Based: Ib/ton glass production:

Equation:
$$\frac{lbCr}{tonGlass} = \left(\frac{lbCr}{hr}\right) \times \left(\frac{day}{tonsGlass}\right) \times \left(\frac{24hr}{day}\right)$$

Calculation:
$$\left(\frac{0.0595 lbCr}{hr}\right) \times \left(\frac{day}{\underline{196.3 tonsGlass}}\right) \times \left(\frac{24hr}{day}\right) = \frac{0.0073 lbCr}{tonGlass}$$

Client: Sant Goloan

Date <u>2/8/20</u>1/ Project # <u>4212</u>

Molecular Weights (lb/lbmol):

CO ₂ =44.01	O ₂ =31.999	N ₂ +Ar=28.154	H ₂ O=18.015	atm=28.965

Constants:

Kp=5129.4 C2=816.5455inHg in²/°R ft² Pstd(1)=29.92129 in Hg Tstd=527.67 °R

Pressure, Absolute Stack (Ps):

Ps, inHg =
$$P_{\text{Barometric}} + \frac{P_{\text{static}}}{13.6} = \frac{30.35}{13.6} \text{ inHg} + \frac{-0.23}{13.6} \text{ in H2O} = \frac{30.35}{13.6} \text{ inHg}$$

Volume, Dry Standard Gas Sample (Vm[std]): $Tm = 69.2 \circ F + 459.7 = 524.9 \circ R$

Orifice Pr ess = Pb
$$\underline{30.35}$$
 inHg + $\underline{\frac{1.016 \Delta H}{13.6}} = \underline{30.43}$ inHg

$$Vm(std) ft^{3} = \frac{Y \times MeterVol \times Tstd \times Orifice \Pr{es(Po)}}{Pstd(1) \times Tm \circ R}$$

$$= \frac{(.0123 \times 63.739 ft^{3} \times 527.67 \circ R \times (Po\ 30.43\ inHg)}{29.9213 inHg \times 524.9 \circ R} = \frac{65.96}{29.9213 inHg \times 524.9} \circ R$$

Moisture, % Stack Gas (bws): $V_{wstd} = 0.04707 \times Cond.H2O, ml = 0.04707 \times 97.4 ml = 4.35 scf$

bws =
$$100 \times \frac{V_{wstd}}{V_{wstd} + V_{mstd}} = \frac{4.35 \text{ scf}}{4.35 \text{ scf} + 65.96 \text{ dscf}} = \frac{6.19 \%}{4.35 \text{ scf}}$$

Mole Fraction Gas (mfg):

$$1 - \frac{\text{bws}}{100} = 1 - \frac{6.19\%}{100} = 0.9381$$

Molecular Weight, Dry, Stack (Md):

$$Md\frac{lb}{lbmol} = \left[(1 - \frac{O_2}{100} - \frac{CO_2}{100}) \times MolWtN2Ar \right] + \left[\frac{O_2}{100} \times MolWtO2 \right] + \left[\frac{CO_2}{100} \times MolWtCO2 \right]$$

$$= \left[(1 - \frac{(9.9 \% O_2)}{100} - \frac{3.6 \% CO_2}{100}) \times 28.154 \frac{lb}{lbmol} \right] + \left[\frac{(9.9 \% O_2)}{100} \times 31.999 \frac{lb}{lbmol} \right] + \left[\frac{3.6 \% CO_2}{200} \times 44.010 \frac{lb}{lbmol} \right] = \frac{29.49}{200} \frac{lb}{lbmol}$$

Client: Saint Goborn

Date 2/8/2011

Molecular Weight, Wet, Stack (Ms):

$$Ms \frac{lb}{lbmol} = (Md \times mfg) + (MolWtH_2O \times (1 - mfg)) = \left(\frac{29.49}{lbmol} \times \frac{0.0381}{lbmol}\right) + (18.015 \times (1 - 0.015))$$

$$= \frac{20.70}{lbmol} \frac{lb}{lbmol}$$

Stack gas (vs):
$$Ts = 37 - 3 \circ F + 459.7 = 837 \circ R$$

$$= v_{S} \frac{feet}{\min} = Kp \times Cp \times dp \sqrt{inH_{2}O} \times \sqrt{\frac{Ts \circ R}{Ps \times Ms}}$$

$$=5129.4 \, ft/\min ... \times \underbrace{0.94}_{\bullet} \times 0.494 \underbrace{dp\sqrt{inH_2O}}_{\bullet} \times \sqrt{\underbrace{\frac{837-\circ R}{20.33}}_{inHg} \times \underbrace{28.78}_{lbmol}}_{lbmol} = \underbrace{2.084.3}_{min} \underbrace{ft}_{min}$$

Flow Rate, Actual (Qa):

$$Qa \frac{actualCubicFeet}{\min} = \frac{AreaStack \times vs}{144} = \frac{\frac{1,885.7in^2 \times 2,094.3}{144} \frac{ft}{\min}}{144} = \frac{27,294}{acfm}$$

Flow Rate, Dry Standard (Qsd):
$$Qsd \frac{dryStdFt^{3}}{\min} = \frac{Qa \times Tstd \times mfg \times Ps}{Pstd(1) \times Ts \circ R} = \frac{27,294}{29.9213inHg \times 937} \circ R \frac{29.9213inHg \times 937}{29.9213inHg \times 937} \circ R$$

 $= 16,362 \frac{dscf}{min}$

Field Data Sheet

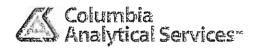
									===				
			Whitaker Way	0	2935		Client: Saint hoborn						
HORIZ		,	OR 97230		2935		Plant: Sentle, WA Location: Furnace, 3.						
ENGINEE	RING	Phone (50: Fax (503)	255-5050 255-0505		2935	บ	Sample	・・・トレハ Location	MAZO L	15,			
Date	2-4-			1			Sample Location: 7.7/13- Probe 5-5 (g/s) CpO S207-Heat Set 250 °F						
Test Met			chrone]		,	21000 /		(5, 5)				
	ent Testing		FY				Pitot Lk	Rate		Pre: Hi	<u>ප</u> @4	Post 🗗	@ 4
Run#					Stack Diagram	<u>n</u>		@in H2O		Lo		4	
	MSC.			eare :	ALT-011					Oven /			<u> </u>
Tempera Moisture	ture, Ambi		(Ta) 4B Twb	-	(ID/°F) C (ID/°F)								
Press., St	tatic (Pstat)	6.2.3 Pr	ress., Bar (Pb) 30, 31	-	inuity Check		Mete			Pretest:	0.005	cfm /c	
Cyclonic	Flow Expe	cted ?/	_If yes, avg. null angle	degrees			Leak Ch			Post: O.	007	cfm /5	-// inHg
Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orlfice Pressure HZO	STACK	PROBE	OVEN Filter	IMPINGER Outlet	Inlet/Avg.	METER Outlet	Pump Vacuum
Number	min (dt)	(24 hr)	cuft (V∞)	(dPs)	DESIRED	ACTUAL (dH)	°F (Ts)	*F (Tp)	°F (To)	°F (ፕፕ)	°F (Tes-in)	°F (Tm-out)	inHg (Pv)
	\-	0756	344 951				Amb:	Amb;	Amb:	Āmb:	Amb:	Amb:	
1	5		347.697	0.2G	0.93	0,98	386	251	249	4/	50	50	2_
2	10		-	023	0/.06	1.	389	252	248	42	49	56	7_
3	15		353.236	0.31	1.17	1.2	389	250	250	43	50	56	2_
4	20		356.478	0.35	1.49	1.45	300	250	248	45	57	50	2
5	25		359.847	0.46	1.74	1.7	390	243	246	46	59	51	2
6	30		363.484	0.53	2.00	2.00	312	251	257	47	60	52.	<i>i)</i>
7	35		366.841	6.41	1.55	1.55	393	250	235	48	61	52	4
8	40		\$64.792	931	1.12	1.2	343	751	253	48	GI	53	_ک_
9	ST.		372.143	0.21	0.79	0.79	394	249	_	43	61	34	2_
10	50		374.269	0.19	6.64	0.67	393	250	256	YB	67	5-5	7
11	55		375.95B	0.11	0.42	0.42	588	250	253	.46	61	54	2
12	60			0.08	0.30	0.30		249		45	59	\$5-	2
13	65		380.113	0.28	1.06	1.06	389		_	_	58	罗梦	کـــ
14	70		382.800	0.28	106	1.06	 - `	25/	253		52	56	3
15	75		385.633		OB/1.13	1.13		, ,	272	44	56	62	3
16	30		3BB .571	0.32	1.21	1.2	393		250		58	64	3
17	35		391.97B	0.46	1.44	1.7	393			96	5B	6	4
18	90		395 .730	054	2.04	2.0	712	251	254	48	59	67	5
19	cos			0.40	1.51	1.5			259	4/3		o k	4
20	100		401 742	0,28	1.06	1.05	393		256	49	59	65	
21	105		404 288	0.22	12	0.83		279		48	58	60	2
22	110		406.200	0.14		0.53	388	262		49	55	64	٧
23	115		407.804	0.10	0.378	0.70	384	249		49	5B	62	ح
24	120	0956	409 356	0.10	0.378	0.3B	388	253	254	51	58	61	5_
25						Ĺ							30
Notes:	_	_											

Field Data Sheet

						ricia Dan											
	13585 NE Whitaker Way 0. 2920										Client: SAINT GOISHIN						
			OR 97230	•				Plant: Seather, WA									
HORIZ	ON	•	3) 255-505		(2	2915				مهده	3						
Fax (503) 255-0505					. * (1)				1: 00								
Date 2/8/2011							Probe F	3-5H	(g / s) C	p 0.8	He	at Set 2	50°F				
Test Met	hod 29	<u>_</u>	Chamo	ς				Post-Te	st Pitot I	nspection	n NL	(NC=nc	o change, I	=damaged)			
Concurr	ent Testing		FY					Pitot Lk	Rate		Pre: Hi	<u>ي @ ۲</u>	Post 🗢				
Run#	<u> </u>					Stack Diagram	n		@in H2C		Lo (ے ا	<u> </u>			
	MSL	Support		G=1		ALT-011			D-22-C1		Oven 2		p. Outlet	-			
	ture, Ambi			B	•	ID/°F)		$\overline{}$	J-W20		AD I P		at Set				
Moisture				Twb		C (ID/°F)		Meter E	<u> </u>	dH@ }	<u>据 18</u>			12_3 5 inHe			
	Press., Static (Pstat) -2.2 Press., Bar (Pb) 30.35 Cyclonic Flow Expected? Uf yes, avg. null angle					nuity Check	f er t	Mete Leak Cl			Pretest:						
Traverse	Sampling	Clock		Gas Meter	degrees	Orifice Pressure	Orifice Pressure	STACK	PROBE	OVEN	IMPINGER	METER	METER	Putnp			
Point Number	Time	Time (24 hr)	R	coft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	. _F	· F	Filter *F	Outlet *F	inlet/Avg.	Outlet *F	Vacuum in∺g			
74800	(dt)	(27 111)		(Vm)	(4)	Dagmos	(dH)	(Ts)	(Tp)	(To)	(Tf) Amb:	(Tm-in) Amb:	(Tm-out)	(Pv)			
		1028	409	.696				Amb:	Алто.	Amb:	Amo:	Amo;	IAMO:				
1 12	5		444	12,132	0,21	0.83	0.83	388	250	24B	\$53	59	62	2_			
		-	1.7	-4 14				7.10					-	~			
2 1	10		414	564	0.21	0.83	0.83	392	251	246	5)	59	60				
3 0	15	_	4116	996	0.26	1,03	103	393	250	254	52	67	61	7			
4 9	20		419	684	0.34	1.34	1.34	39)	242	258	51		62	<u>د</u>			
5 0	25		422	.679	0.42	1.65	1.65	390	253	254	50	69	62				
6 J	30		426	·67B	0.48	1.39	1.9	380	249	254	51	70	63	5			
7 6	35		429	.744	0.34). 34	1.39	387	253	254	5-1	68	62	9			
8 5	40		432	.773	0.25	0.935	0.99	38.9	254	256	51	68	62	3			
, U	45		935	. 444	0-16	0.63	063	375	251	254	52	69	62	7			
10 3	50		437	540	0.14	0.55	0.55	355	252	25Y	54		63	2_			
11 7	55		439	586	0.09	0.35	0.35	350	251	254	54	68	63	2			
12	60			.565	0.09	0.35	0.35	350		799		63	63	2			
13 12	65		446	.211	0.24	0.95	0.95	368	250	254		68		2			
14]]	70		446	.772	0.24	0.95	0.95	384	254	250	53		63				
15 /1/	75		449	.481	O. 2/L	1.03	1.03	386	251	254	50	70	64	3			
16 9	80		452	500	0.34	1.34	1.34	387	253	254	52	69	64	U			
17 B	85		455	.876	0.42	1.65	1.65	359		254	49	70	64	3			
18 4	90		459	560	0.50	1.97	1.97	3 <i>B</i> B	276	2501	50	69	64	6			
19 6	95		463	.472	0.47	1.85	1.95	3139	248	\$72	\$3	70	64	6			
20 5	100		466	.09B	0.28	1.10	1.10	387	272	254	<u>72</u>	69	63	5			
21 Y	105		468	464	0.20	0.79	0.79	373	247	255	54	68	63	3			
22 3	110		470	.330	0.13	051	0.51	354	J52	254	54	67	63	3			
23 2	115		471	936	0.09	0-35	0.35	351	250	254	34	66	63	3			
24	120	1228	473	.435	0.04	0.35	0.35	347			53	67	63	3			
25													-,	31			
Notare																	

Notes:

														·
	Fe-	13585 1	NE Whitake	er Way				Clien	t: Sciin	T-6.	obain)			
	*************************************	Portlan	id, OR 972	30	1			Plant	: 500	+15,0	1 A _			
-10P		Phone	(503) 255-5	050				Locat	ion: F.	MAL	2 3			
	- 100	Fax (50	3) 255-050:	5				Samp	le Locati	ion: 🕡	لها [لس	L		
Date ,	218/2	110						Probe	5-5	(g/s)	CnO.R	2071	Teat Set	250
	ethod 2									t Inspecti		(NC	no change,	D≔damageo
		ng Yes	F3	G C	_			Pitot !	Lk Rate		Pre: H		4 Post	O @4
Rim#		hilelan.		8		Stack Diagr			O@in H			oレ @	<u> </u>	0 @ Y
Operate					_	ALT-01	<u>1</u>		e <i>O.</i> 29		Oven			# _
	ature, An	-	(Ta) 6		_	C (ID/°F)				129-0		E	leat Set	
Moistur	_//	/O Tdb	,	Twb	_	TC (ID/°F)		Meter	/-	dH@		+	_	7/23
Press., S	Static (Pst	at) 0 23	Press., Bar	(Рь) 30.31	, Co	ntinuity Check	† or ‡	Мe				0,000		\mathcal{Q} in
				vg. null angle				Leak				D: 00E		3 in
Point	Sampling	Clock Time	D _i	ry Gas Meter Reading	Velocity Hear In H2)	in H2O	e Orifice Pressur H2O	e STACE	PROB	E OVEN	IMPINGI Outlet	ER METER Inlet/Av		Pump Vacuum
Number	min (dr)	(24 hr)		cufi (Vm)	(dPt)	DESIRED	ACTUAL	*F	*F	₽ °F	Ŧ	' F	*F	gHai
	(40)	harl	474	.045	┥ :	- [-]·	(EH)	Amb:	(Tp) Amb:	(To) Amb;	Amb:	Amb:) (Tan-cut	(Pv)
١.	1 -	1255	1971		1000	-	1 00	1000	7	+		+	-	 ,
12	5	-	476	507		1.04	1.04	<u>לטכן</u>	24		+	-61	59	
11	10	1	1979	<u>.478</u>	0.27	1.04	1.04	385	2.56	250	45	63	61	1
10	15		1482	1421	0.31	1.195	1.2	386	245	248	47	67	62	1
9	20		485	, 497	-0.36	1.34	11.4	385	251	25)	119	68	G	2
8	25		488	:726	0.40	1.54	1.5	384	248	252	49	70	63	2_
7	30		492	.427	0.53	2.04	2.0	388		256	49	69	63	3
6	35		495	679	10.40	11.54	1.5	389	253	257	50	69	63	2_
5	40		498	.371	0.27	1.04	1.0	391	251	254	50	69	62	2
V	45		800	.853	0.23	0.89	0.89	385	248	254	50	69	63	2
3	30	-	502	.817	0.14	0.54	0.54	387	250	257	50	68	63	2
2	55		504	.703	0.13	0.50	0.50	383	247	251	33	68	64	2
1	60		506	.560	0.10	0.39	0.39	380	249	255	-54	69	63	Z
12	65		509	.219	0,26	1.00	1.00	-	245	250		69	64	2
1/	70		511	.863	0.26	1.00	1.00	389	245	250	56	70	64	2_
10	75		514	.743	0.30	1.16	1.Pg	390	250	254	55	69	63	2
9	日口		517	604	0.31	1.195	1.20	351	251	252		69	63	2
9	83		520	.997	0.43	1.66	1.7	390	25]	254	55	68	63	4
7	90		524	722	0.52	2.60	2.0	394	246	25]	35	68	63	4
b	95		528	.294	0.43	1.66	1.7	396	248	254	56	69	53	Ч
5	100		531	.213	0.30	1.16	1.2	395	230	255		•	63	3
4	105		533	782	0.23	0.89	0.89	345	24B	250	49	63	63	3
	110		335	.727	0.14	2.54	0.54	390	253	253	47	67	62	2
7	115		537	.361	0.10	0.39	039	384	251	286	47	64	61	2
	20	1455	538	973	0.10	0.34	0.35	389	252	256	47	43	60	2
			_					 ' .						-


풇
ઝૂ
말
÷=
જ
¥
$\overline{}$
~
<
_
~
抽
Ž,
~
х
\mathbf{g}
Ψ
œ
-
7
a
\Box
Sar
ū
ഗ
_
=:
38
72
82
B
B
B
dethod 29
B
Method
Method
Method
A Method 2
Method

		30							0.00	- 1									000	0.00					
Date Operator Job# Analyst		5B				0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.00								
Ξ	Run 3	5A				0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.00									
8-Feb-l msl,ps 4121 MEW	Rı	4	9	473.00 379.00	76.00	200.00	0.00	0.00	0.00	0.00	91.20	100.00			94.00	73.65		;	200.00		631.00	620.00	11.00		102.20
		m		123.00 28.00	28.00							95.00			95.00	70.+2									
		2											0.00	0.00											
		50				0.00	0.00	0.00	0.00	0.00	0.00	0.00							00.0	00.0					
		æ				0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.00								
	Run 2	5A				0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	8									
	R	4		369.00	76.00	200.00	0.00	0.00	0.00	0.00	81.20	100.00			94.00	60.66			200.00		631.00	620.00	11.00		92.20
		ю		28.00	28.00							94.00			94.00	C0.5%									
		2		_									0.00	0.00											
	H	30		_		0.00	0.00	00.0	0.00	0.00	00.0	0.00		_			-		000	0.00		_			
		SB				0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.00								
		5A				0.00	0.00	0.00	0.00		00.0				0.00	0.00									
	Run 1	4		472.00 377.00	75.00					J	90.20				95.00				200.00		633.00	620.00	13.00		103.20
		3		28.00								96.00			96.00	+0.5.c			•						
		2	•										0.00	0.00											
	Units		ta.	EO 11) td	E E	<u>=</u>	星	뒽	jį	23	12		0 冒	E, E		 百	₽,	E E	i, T) 4	n to	_	to 1
	ח																								
Saint Gobain Furnacc #3 Exhaust MS/M29 (Metals)	Symbol		Rinse #2	Impinger, Contents, Condensate & Riuse#1 Impinger, Contents & Condensate	Impirger	1.0590 10% HZO2 / 5% HNO3	1.1515 4% KMnO4 / 10% H2SO4	1.0016 0.1 N HNO3	00	1.0878 8N HCL / H2O	Condensate	Rinsc	Acetone		0.1 N HNO3	10% KMnO4		10% H2O2 / 5% HNO3	8N HCL / H2O		Final weight	Initial weight	Gain		Total Moisture Gain Condensate + Silica Gel gain
Sai Fa	$ \ $	tents	Ψ.		Ŧ	1.0590 10	1.1515 4%	1.0016 0.1	0.9982 H2O	1.0878 8N	បី	12	Αc		0			10	88	5			ບື		c Gain C.
Client Source Location	Definitions	Impinger Contents		SDE	g/m]	·										Rinse + Initial					Silica Gel Impineer	_			Total Moistur

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

Sample	Recovery W	orksheet –	EPA Metho	od 29 Multi-	Metals	
Client: Saint Goodin		Source:	Feernace	#3		
Run No.:	Test	Date: <u>200</u>		rams		
Container No.	Tare	Imp. Conf.	#1 Rinse	#2 Rinse	Start	End
#1 Filter 10-07m29-46	14,0	mp. com.	# (Tallioo		4 • • • • • • • • • • • • • • • • • • •	
#2 Imp. Acetone						
#3 Probe Rinse, HNO₃	28		124			
#4 HNO ₃ or HNO ₃ /H ₂ O ₂	75	377	472			
#5A, 0.1 N HNO ₃						
# 5B KMNO ₄ /H ₂ SO ₄ /H ₂ O						
#5C 8N HCI / H2O						
#6 Silica Gel	620	633				
•						
2						
Run No.:2	Test	Date: _26	110208	·		
			gı	rams		
Container No.	Tare	Imp. Cont.	#1 Rinse	#2 Rinse	Start	End
#1 Filter						
#2 Imp. Acetone	- b @					
#3 Probe Rinse, HNO ₃	28	5. 0	122			
#4 HNO ₃ or HNO ₃ /H ₂ O ₂	76_	369	_763_			
#5A, 0.1 N HNO ₃		-				
# 5B KMNO ₄ /H ₂ SO ₄ /H ₂ O						<u> </u>
#5C 8N HCI / H ₂ O	1-20	631				<u> </u>
#6 Silica Gel	620	651				
Run No.: 3	Tost	Date:	0/1/03/05	2		
Nui/ No	1651	Date				
Container No.	Tare	Imp. Cont.	יפ #1 Rinse	ams #2 Rinse	Start	End
#1 Filter	late	mip. Conc.	#1 1/11/56	#2 KillSe	Otall	LING
#2 Imp. Acetone						
#3 Probe Rinse, HNO ₃	28		123			
#4 HNO ₃ or HNO ₃ /H ₂ O ₂	76	_379	473			
#5A, 0.1 N HNO ₃			-/-			
# 5B KMNO ₄ /H ₂ SO ₄ /H ₂ O						·
#5C 8N HCI / H ₂ O						
#6 Silica Gel	620	631				

March 7, 2011

Analytical Report for Service Request No: K1101149

Margery Heffernan Horizon Engineering, LLC 13585 NE Whitaker Way Portland, OR 97230

RE: Saint Gobain/4212

Dear Margery:

Enclosed are the results of the samples submitted to our laboratory on February 10, 2011. For your reference, these analyses have been assigned our service request number K1101149.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3291. You may also contact me via Email at EWallace@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Ed Wallace Ed Wallace

Project Chemist

EW/dlm

Page 1 of __/_

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- See case narrative. One or more quality control criteria was outside the limits.
- H In accordance with the 2007 EPA Methods Update Rule published in the Federal Register, the holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value that was detected outside the quantitation range.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case parrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case parrative.
- # The control limit criteria is not applicable. See case narrative.
- A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value that was detected outside the quantitation range.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product cluting in approximately the correct carbon range, but the clution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	- :
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

Horizon Engineering, LLC

Project:

Sample Matrix:

Saint Gobain

Water and Filter

Service Request No.:

K1101149

Date Received:

2/10/11

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Eight water and four filter samples were received for analysis at Columbia Analytical Services on 2/10/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored at room temperature upon receipt at the laboratory.

Total Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Chromium for sample Cont. 4 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Laboratory Control Sample Exceptions:

The upper control criterion was exceeded for Chronium in the "Front Half' Laboratory Control Sample (LCS) (119% recovery versus an upper control limit of 115%). Since the entire Front Half sample is consumed in the initial digestion reanalysis was not possible. No further corrective action was appropriate.

EMW Date 3/8/11

Analytica	Columbia
 Service	

フロシアンにつうてく

~	
유	
٧	SR#:
COC #	KIIOII
	111

ACOC #1 07/09	1			
me Firm		Firm	Phriba Napris	Printed Name Firm
Secured By: Secur	RELINQUISHED BY:	RECEIVED BY:	Single Si	RELINQUISHED BY: 2/w/() Bigmattire 1 Dally Time
			Requested Report Date	V. EUU
			Provide FAX Results	
			5 Day Standard (10-15 working days)	III. Data Validation Report (includes all raw data)
	S/CCMINIEN I S:	SPECIAL INSTRUCTIONS/COMMENTS	24 hr48 hr.	
OTHER: (CIRCLE ONE)	OCARBON PROCEDURE: AK CA WI NORTHWEST		THEMANDING RECORDER TO	II. Report Dup., MS, MSD as
vi K Ag Na Se Sr Tl Sn V Zn Hg	Ba Be B Ca Cd Co Cr Gu Fe Pb Mg Mn Mo Ni	Dissolved Metats: Al As Sb		Blank, Surrogate, as
K Ag Na Se Sr TI Sn V Zn Hg	Ba Be B Ca Cd Co CO Cu Fe Pb Mg Mn Mo Ni	Total Metals: Al As Sb	BIII To: The Y Brewell	Routine Report: Method
	enalyzed:	Circle which metals are to be analyzed:	INVOICE INFORMATION	REPORT REQUIREMENTS
	×		\	5%/10% Blank
	×,			D. IN HND, Stuit
	Χ,			<i>p.</i> 3
	X			22
	X			为作书 F/2 Al
	X			<i>p</i> 3
	×			22
	×			EMF#3 Ino. RI 2/8
REMARKS	PCI Peigo Chin PAI Mee Cyc PH No. NH. O.	Sei 6, 701, 624 Hyd Gas	-	SAMPLE I.D. DATE
X 9020	Great	MBER Mivolation of the control of th	503-255-0505	SWIPLERS SIGNATURE
	Serrer Server Se	lle Org 8270 ganic 960 i 7	2	ODRESS /
AOX :	icides icides	Panics 8	97230	CITYSTATE OF POTHLISTA, OR
1650 [166. 166. 141A (COP)	by G	reluce way	COMPRESSION SE NE WAR
500	7 81 7 81	CAL	Splan	PROJECTIMMINGER Preston SK
6.57	51A:3	-		PROJECT NUMBER 42/2
1 -	- FAX (360) 636-1068 FAGE	(360) 577-7222 · (800) 695-7222x07	1317 South 13th Ave. • Ketso, WA 98626 •	131
SR#: 10/10/19/19				Analytical Services

6

CHAIN OF CUSTODY

OF 2 COC#

6	A RELINQUISHED BY:	(Includes all raw data) (V. CLP Deliverable Report	III. Data Validation Report	up., MS, MSD as	Blank, Surrogate, as required		REPORT REQUIREMENTS				Filter Alamies V3	1-3	22	SME#3 [JA-#] 2/8	MPLE I.D. DATE	0505-557-5050	CHARLADDRESS POR BLACK &	135 S NE W	ا کرا:	PROJECT NUMBER / 12/7		
Printed Wall	Requested Report Date	Standard (10-15 working days) Provide FAX Results	24 hr48 hr5 Day	TURNAROUND REQUIREMENTS SP		BILL TO: From In Balance	OICE INFORMATION				₩			Spl. 1	TIME LABI.D. MATRIX	ESO-256-89	1 97,30 ON	Fitakar Ivan	MAS		1317 South 13th Ave. • Kelso, WA 98626 • (360	
autiliare Samany	77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			SPECIAL INSTRUCTIONS/COMMENTS:	Dissolved Metals: Al As Sb Ba Be B Ca	Toral Metals: At As Sb Ba Be B Ca	Circle which metals are to be analyzed:		0692	- 6					Semi Semi Semi Semi Semi Semi Semi Semi	Volatile 82 82 82 82 82 82 82 82 82 82 82 82 82	Organic 70 inics nics 8 (*see sese) (*) erprint (* Screen M (*)	Ps by G 8270LL 021 [7] below) Oll [7]	C/MS IJ BTE	X _Q	Kelso, WA 98626 • (360) 577-7222 • (800) 695-7222x07 • FAX (
e Jaue/Ilme				OCEDURE: AK CA WI	Co Cr Cu Fe Pb Mg	a Cd Cc(Cr)Cu Fe Pb Mg Mn					×	×	X	×	Pestilion Chlor PAHS PAHS Metall (See III) Cyanii	ides/H 8081 Opheno Tetra 8310 S, Total st belou	Conge Brbicide A /) & Ilics - 8 i Ilics -	PCP Olved	7 815	IAU	FAX (360) 636-1068 PAGE)
Signature N Date				NORTHWEST OTHER:(CIR	K Ag Na Se Sr	∩ MoNiK Ag Na Se Sr Tl									NH3-1- DO() TOX S	OSO L	Hex-(- I, SO, 4, T TSS, T Total-, NO2+	PO 4. PO 4. DS (cir TKN) NO.3	F, NO.		COC #	
10/11/265				CIRCLE ONE)		Sn V Zn ⊬g									REMARKS	<u></u>	_	_	_		41	

			-		vices, Inc. vation Form			PC_ <u></u>	<u> </u>
Client / Project:	1261				vice Request I	711 ()1149		. (
	Opened: 2/1	2/4	By:	3	Unload	 7	10 11 B	y: 5	M/
Samples were received via?	Mail Fed E	e <i>UI</i>	PS DE	ĭL	PDX Cour	er) He	md Delivered	,	1
2. Samples were received in: (cir		Box	-	lope	Other			_ NA	f -
3. Were custody seals on coolers	na)	Y	N I	yes, h	low many and w	here?			
If present, were custody seals	intact?	Y 1	N	If pro	esent, were they	signed ar	nd dated?	. Y	N
Cooler Temp Temp °C Blank °C	Thermometer ID.	Cot	ib. N	a		Trackin	g Number	(NA	Filed
· .									
7. Packing material used. <i>Inse</i> 8. Were custody papers properly 9. Did all bottles arrive in good of	filled out (ink, sign	ned, etc.)	?		Wet Ice Sleev	es Othe	or Styrold		N
10. Were all sample labels complete.				avie ve	erow.			IA Y	Y N
11. Did all sample labels and tags				iajor d	liscrepancies in	the table	on page 2. N	IA Y	Y N
2. Were appropriate bottles/cont	ainers and volumes	received	for the tes	s indic	cated?		N	IV (A	. И
3. Were the pH-preserved bottle		•	-	-	ate pH? Indicate	in the ta	ble below (N	IA. Y	• •
14. Were VOA vials received with 15. Was C12/Res negative?	hout headspace? In	ndicate in	the table b	elow.			(N	IA Y	N N
TERRETARINE SERVICE SERVICES		E har ve		182.0%					
Sample ID on Bottle		Sample	1D on COO				Identified by:		
				_					
	Bottle Count	Out of H	ead-			Volume	Reagent Lot Number		
Sample ID	Bottle Type	i emp is	oace Broke	Piq	Reagent	added	- reginuel	Initials	Time
								, 61	
Notes, Discrepancies, & Resolu	tions:								
								<u> </u>	
									42

PC (A)

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149 Date Collected: 02/08/11 Date Received: 02/10/11

Date Extracted: 02/24-26/11

Total Metals Units: Micrograms (µg) (Field Blank Corrected)

Front Half Run - 1 (Analytical Fraction 1A) Back Half Run - 1

Total Front Half +

(Analytical Fraction 2A)

Back Half

Sample Name: Lab Code:

Cont. 1 & 3 K1101149-001,-002

Cont. 4 K1101149-003

Front

02/28/11

MRL

Date Analyzed:

02/28/11

Back Half Total

EPA Analyte Method Chromium 29/200.8

Half MRL 1.0 1110

0.1 75.4 MRL 1.1

1190

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149

Date Collected: 02/08/11

Date Received: 02/10/11 Date Extracted: 02/24-26/11

Total Metals Units: Micrograms (µg) (Field Blank Corrected)

Front Half Run - 2

Back Half Run - 2

Total Front Half +

(Analytical Fraction 1A)

(Analytical Fraction 2A)

Back Half

Sample Name:

Cont. 1 & 3

Cont. 4

Lab Code: Date Analyzed: K1101149-004,-005

K1101149-006

02/28/11

02/28/11

Front EPA Half Back Half MRL

0.1

Total MRL

Analyte Method Chromium 29/200.8 MRL

1810

3.9

1.1

1810

Analytical Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149
Date Collected: 02/08/11
Date Received: 02/10/11

Date Extracted: 02/24-26/11

Total Metals Units: Micrograms (µg) (Field Blank Corrected)

Front Half Run - 3

Back Half Run - 3

Total Front Half +

(Analytical Fraction 1A)

(Analytical Fraction 2A)

Back Half

Sample Name:

Cont. 1 & 3

Cont. 4

Lab Code:

29/200.8

K1101149-007,-008

K1101149-009

Date Analyzed:

02/28/11

02/28/11

EPA Analyte Method

Chromium

Half MRL

Front

Half MRL 1.0 1980 Back Half MRL 0.1

6.7

MRL

Total

1.1 1990

Analytical Report

Client: Horizon Engineering, LLC

Project: Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149

Date Collected: 02/08/11

Date Received: 02/10/11

Date Extracted: 02/24-26/11

Total Metals Units: Micrograms (μg)

	Sample Name:		Front Half Blank (Analytical Fraction 1A)		Back Half Blank (Analytical Fraction 2A)
	Lab Code:		K1101149-010,-011		K1101149-011,-012
	Date Analyzed:		02/28/11		02/28/11
		Front #		Back	
	EPA	Half		Half	
Analyte	Method	MRL	•	MRL	
Chromium	29/200.8	1.0	1.2	0.1	0.3

Page No.:

Analytical Report

Client: Horizon Engineering, LLC

Project: Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149

Date Collected: NA
Date Received: NA

ND

Date Extracted: 02/24-26/11

Total Metals Units: Micrograms (μg)

 Method Blank Method Blank Method Blank

 Sample Name:
 Front Half
 Back Half

 Lab Code:
 K1101149-MBF
 K1101149-MBB

 Date Analyzed:
 02/28/11
 02/28/11

 Front
 Back

 EPA
 Half
 Half

 Analyte
 Method
 MRL
 MRL

 Chromium
 29/200.8
 1.0
 ND
 0.1

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149
Date Collected: 02/08/11
Date Received: 02/10/11

Date Extracted: 02/26/11 Date Analyzed: 02/28/11

Duplicate Summary Total Metals

Units: Micrograms (µg) (Field Blank Corrected)

Sample Name:

Cont. 4

Lab Code:

K1101149-003D

				Duplicate		Relative
	EPA		Sample	Sample		Percent
Analyte	Method	MRL	Result	Result	Average	Difference
Chromium	29/200.8	0.1	75.4	75.5	75.5	<1

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

Sample Matrix: Misc.

Service Request: K1101149 Date Collected: 02/08/11 Date Received: 02/10/11 Date Extracted: 02/26/11 Date Analyzed: 02/28/11

CAS

Matrix Spike Summary Total Metals Units: Micrograms (µg) (Field Blank Corrected)

Sample Name:

Cont. 4

Lab Code:	K1101149-003S				Spiked		Percent Recovery
Analyte		MRL	Spike Level	Sample Result	Sample Result	Percent Recovery	Acceptance Limits
Chromium		0.1	7.7	75.4	83.7	NA	70-130

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

LCS Matrix:

Water

Service Request: K1101149

Date Collected: NA
Date Received: NA

Date Analyzed: 02/28/11

Laboratory Control Sample Summary (Front Half)

Total Metals Units: μg/L (ppb)

Source:

CAS Spike Solution

CAS Percent

Percent Acceptance
Recovery Limits

Analyte
Chromium

29/200.8

EPA

Method

100

True

Value

119(X) 119

Result

85-115

50

QA/QC Report

Client:

Horizon Engineering, LLC

Project:

Saint Gobain/4212

LCS Matrix:

Water

Service Request: K1101149

Date Collected: NA
Date Received: NA

;

Date Analyzed: 02/28/11

Laboratory Control Sample Summary (Back Half)

Total Metals Units: μg/L (ppb)

Source:

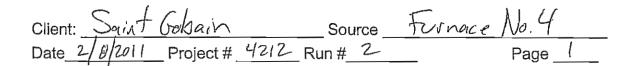
CAS Spike Solution

CAS

Percent Recovery **EPA** True Percent Acceptance Analyte Value Limits Method Result Recovery Chromium 29/200.8 20 20.7 104 85-115

Traverse Point Locations

Saint Gobain	8-Feb-11
Furnace #3	PS
Exhaust	4212
EPA 1	mew


Outer Circumference	Co	in					
Wall thickness		in					
wall inickness	t	m			Down Str	eam	
INSIDE of FAR WALL	F	in	52.0	0		——Distu	ивалсе
to OUTSIDE of Nipple				1			
INSIDE of NEAR WALL	N	in		3 A		Port	
to OUTSIDE of Nipple					J 05		
STACK WALL to	N-t	in		7	F		Co
to OUTSIDE of Nipple				1			C C
DOWNstream Disturb	A	in	120.	0			
UPstream Disturb	В	in	240.				
Inner Diameter	Ds	$_{ m in}$	4	9 B	4.	1/1	Contract of the Contract of th
Area	As	sqin	1885.	7	1	1	E-
DOWNstream Ratio	A/Ds		2.4	5	Flow		
UPstream Ratio	B/Ds		4.9	0			
					- /	———Distr	rbance
Minimum #Pts (Particulate)			2		/ /	\	
Minimum #Pts/Diameter			1	1	Illa Stanzas	\	
Minimum #Pts (NON-Particul	ate)		1		Up Stream	\	
Minimum #Pts/Diameter				8 /		\	
Actual Points per Diameter			1				
Actual Points Used			2				
Trav	Fract	Stack	Actual	Nearest	Adjusted	Traverse	Traverse
Pt	Stk ID	ID)	Points	8ths	Points	Points	Points
#No	(f)	(Ds)	(Dsxf)	(TP)	(TP)	(TP + N)	(TP + N)
1	2.13%	49.0	1.	0 1	. 1	4	4
2	6.70%		3.		_		6 1 / 4
3	11.81%	49.0	5.				8 3 / 4
4	17.73%	49.0	8.	7 8.625	8.625	11.625	11 5 / 8
5	25.00%	49.0	12	3 12.25	12.25	15.25	15 1 / 4
6	35.57%	49.0	17.	4 17.375	17.375	20.375	20 3 / 8
7	64.43%	49.0	31.	6 31.625	31.625	34.625	34 5 / 8
8	75.00%	49.0	36.	8 36.75	36.75	39.75	39 3 / 4
9	82.27%	49.0	40	3 40.375	40.375	43.375	43 3 / 8
10	88.19%	49.0	43.				46 1 / 4
11	93.30%	49.0	45.				48 3 / 4
12	97.87%	49.0	48.	0 48	48	51	51

Furnace No. 4: SO₂ and NO_x
Results and Example Calculations
O₂ & CO₂ for Molecular Weight Determinations
Analyzer Calibration Field Data and QA Checks
Data Logger Gas Charts & Printouts
3-Point Stratification Check

Saint Gobain Furnace #4 Exhaust Feb. 08 2011 PS 4212

Nitrogen Oxides (NOx) Sulfur Dioxide (SO2) Emissions

Number of Completed Runs			Run 2	Run 3	Run 4	Average
System Calibration Time - Initial		Tci	10:12	11:57	13:43	
Test Time-Starting		Tts	10:19	12:17	13:47	
Test Time-Ending		Tte	11:20	13:19	14:48	
System Calibration Time - Final		Tcf	11:57	13:43	15:05	
Test Mid-point Time		Tx	10:50	12:48	14:17	
Volumetric Flowrate, Dry Standard	dscf/min	Qsd	17,057	15,417	15,805	
Oxygen	%	O2	16.60	16.56	16.74	
Carbon Dioxide	%	CO2	3.75	3.71	3.57	
Nitrogen Oxides	NOx	Range	1000	1000	1000	
Indicated average-Dry	ppmv	Cid	360.37	358.85	337.79	352.33
Cylinder Value - High Range calibration gas	ppmv	Cma	527.40	527.40	527.40	
Cylinder Value - Low Range (Zero) calibration gas	ppmv	Coa	0.00	0.00	0.00	
System Calibration Response - High Range gas - Initial	ppmv	Cmi	500.67	493.64	490.95	
System Calibration Response - Low Range gas - Initial	ppmv	Coi	0.09	0.41	0.99	
System Calibration Response - Low Range gas - Final	ppmv	Cof	0.41	0.99	0.65	
System Calibration Response - High Range gas - Final	ppmv	Cmf	493.64	490.95	489.00	
Actual average - Dry (Corrected for Drift)	ppmv-NO2	Cgas	381.48	384.20	361.60	375.76
Mass Emissions	lbm-NO2 / hr	Mgas	46.61	42.43	40.94	43.33
Production Based Rate	lbm-NO2 / ton		8.86	8.07	7.79	8.24
Glass Production	ton-glass / hr		5.26	5.26	5.26	5.26
Sulfur Dioxide	SO2	Range	50	50	50	
Indicated average-Dry	ppmv	Cid	32.24	29.50	30.71	30.82
Cylinder Value - High Range calibration gas	ppmv	Cma	25.70	25.70		
Cylinder Value - Low Range (Zero) calibration gas	ppmv	Coa	0.00	0.00	0.00	
System Calibration Response - High Range gas - Initial	ppmv	Cmi	25.75	26.02	25.62	
System Calibration Response - Low Range gas - Initial	ppmv	Coi	1.49	1.11	0.94	
System Calibration Response - Low Range gas - Final	ppmv	Cof	1.76	0.94	1.35	
System Calibration Response - High Range gas - Final	ppmv	Cmf	27.14	25.62	26.28	
Actual average - Dry (Corrected for Drift)	ppmv-SO2	Cgas	31.94	29.51	30.12	30.52
Mass Emissions	lbm-SO2 / hr	Mgas	5.4351	4.5383	4.7491	4.91
Production Based Rate	lbm-SO2 / ton	-	1.03	0.86	0.90	0.93
Glass Production	ton-glass / hr		5.26	5.26	5.26	5.26

GASEOUS EMISSION RATE, LB/HR

Equation:

=

$$E\frac{lb}{hr} = \frac{60\frac{\min}{hr} \times GasMeasured(ppmv) \times GasMolWt \frac{lb}{lbmol} \times 2116.22\frac{lbf}{ft^2} \times Flow\frac{dscf}{\min}}{10^6 \times 1545.33\frac{ftlbf}{lbmol \circ R} \times 527.7 \circ Rstd}$$

where Molecular Weights (lb/lbmol):

CO=28	SO ₂ =64
NO _x =46	TGOC as C=12

Calculation:

FlowRate =
$$\frac{15,417}{\text{min}} \frac{dscf}{\text{min}}$$
GasName NOx MeasuredConcentration = 384 ppmv

$$E\frac{lb}{hr} = \frac{60\frac{\min}{hr} \times \frac{26U}{ppmv} \times \frac{46}{lbmol} \times 2116.22\frac{lbf}{ft^2} \times \frac{1547}{\min}}{10^6 \times 1545.33\frac{ftlbf}{lbmol \circ R} \times 527.7 \circ Rstd}$$

$$= \frac{424 \text{Mm} - 100 \times 1545.33}{100 \times 100} \times \frac{1545.33}{lbmol \circ R} \times \frac{1547}{lbmol \circ R} \times \frac{1545}{lbmol \circ R} \times \frac{1547}{lbmol \circ R} \times \frac{154$$

Sample Calculations, Additional Concentrations and Rates - Gases

Client:	S	aint	Gobain		Sour	ce	Furnace	No. C	1
Date_	2/8	2011	Project #	4212	Run #	2	_	Page _	2

Gaseous Emissions Production Based: Ib/ton-glass

Gas Name: NOx Measured Results, lb/hr 42,4
--

Equation:
$$lb/ton = lb/hr \div ton/hr$$

Calculation:
$$42.4$$
 $lb/hr \div 5.26$ $ton/hr = 8.06$ lb/ton

Molecular Weight

Saint Gobain Furnace #4 Exhaust

Feb. 08 2011 PS 4212

O2 & CO2-EPA 3A

mew

O2 & CO2-EPA 3A						mew
Number of Completed Runs			Run 2	Run 3	Run 4	Average
System Calibration Time - Initial		Tci	10:12:28	11:57:07	13:43:47	
Test Time-Starting		Tts	10:19:41	12:17:07	13:47:00	
Test Time-Ending		Tte	11:20:48	13:19:44	14:48:00	
System Calibration Time - Final		Tcf	11:57:07	13:43:47	15:05:00	
Test Mid-point Time		Tx	10:50	12:48	14:17	
Molecular weight, Dry Stack	lbm/lb-mole	Md	29 <u>.</u> 39	29.38	29.36	
Oxygen	O2	Range				
Indicated average - Dry	%	Cid	16.40	16.36	16.54	16.43
Cylinder Value - High Range calibration gas	%	Cma	12.02	12.02	12.02	
Cylinder Value - Low Range (Zero) calibration gas	%	Coa	0.00	0.00	0.00	
System Calibration Response - High Range gas - Initial	%	Cmi	11.85	11.92	11.81	
System Calibration Response - Low Range gas - Initial	%	Coi	-0.02	0.01	-0.06	
System Calibration Response - Low Range gas - Final	%	Cof	0.01	-0.06	-0.07	
System Calibration Response - High Range gas - Final	%	Cmf	11.92	11.81	11.80	
Actual average - Dry (Corrected for Drift)	%	Cgas	16.60	16.56	16.74	16.63
Carbon Dioxide	CO2	Range				
Indicated average - Dry	%	Cid	3.75	3.72	3.58	3.68
Cylinder Value - High Range calibration gas	%	Cma	12.05	12.05	12.05	
Cylinder Value - Low Range (Zero) calibration gas	%	Coa	0.00	0.00	0.00	
System Calibration Response - High Range gas - Initial	%	Cmi	11.97	11.98	12.00	
System Calibration Response - Low Range gas - Initial	%	Coi	0.00	0.10	-0.03	
System Calibration Response - Low Range gas - Final	%	Cof	0.10	-0.03	-0.07	
System Calibration Response - High Range gas - Final	%u	Cmf	11.98	12.00	12.00	
Actual average - Dry (Corrected for Drift)	%	Cgas	3.75	3.71	3.57	3.67

13585 NE Whiteker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

Calibration Field Record

Client: Saint Gobain
Test Date: 2011 02 08
Source: #4 Furnace

Tester(s): FS, KRK; VDB, KA Observer: Datalogger: Test Point Conditioner:

										_	
Leak Checks: Pre-OK Post-OK Probe placemen	m Centrick	Cyfinder #	Gas	Cylinder Value (Cv)	Analyzer Calibration Response (Cdir)	Resp. Time (secs)	Start Run 1 System Calibration Response [Cs]	End Run 1 Start Run 2 System Calibration Response (Cs)	End Run 3 Start Run 3 System Callbration Response (Cs)	End Run 3 System Calibration Response (Cs)	Run 4
	Times				7:42		8:15	10:10	11:45	13:35	15:05
02%	ch_/	12-mix2	0 02	22.22	22.26	30					
Range/CS	0-25,	R-miya6		12.02	11.90	7	11.80	11.85	11.92	11.81	11.80
Analyzer Model	- 1.1.5	R.14.70		0.0	0.02	d	0.01	-0.02	2.01	-0.00	-0.07
Analyzer SN:	HE 013										
	7	0.10		21,23	01.2//	30		1			
CO2 %	ch_2	R-MINAC			21.24	10	11 00	11.97	1/08		12.00
	<u>n-25 / </u>	P-Mixx6		12.05			11,93		11,98	12.00	
		R-mik29	N2	0.0	0.03	\	-0.03	0.00	0.10	~ 0.03	-0.07
Analyzer SN:	HE 166										
CO ppm	ch		co								
Range/CS	<u> </u>		CO		1 3 .						
Analyzer Model	·		_ N2_								
Analyzer SN:											
NOx ppm	ch 4	R-miy. 18	NO	968	968	45					
Range/CS D	-10001	R.MX30	ND	527	521	Ĩ	516	501	494	491	489
Analyzer Model		Pm XOG	N2	2,0	0,45	1	.045	0.09	0.41	0.99	0.65
Analyzer SN:		R.mix29		24.5		<u> </u>		25,92	25,51		<u> </u>
					110-22)			
TGOC ppm SO2 Y				14	48.32			,	26.02	25.12	7/ 26
Range Z /	<u> </u>		-		25.56		· ·		1.1/	25,62	1.35
Analyzer Model					-0.08				(1)//	0.94	1,22
Anelyzer SN:			Alr	<u> </u>							
SOZ	ch_Z	A-mix-31	502	48,5	4815	75					
Range/CS D-	50,	Emix29		85,7	25,55		25,3		27.14		
Analyzer Model	WR 721-M	K-21.726	1/2	DID	0.12	↓	0.60	1.49	1.76		
Analyzer 8N:	295										
						_					
Performance S	Specs: (3A, 6C, 7E	, 10, 20)									
Note: CS=High		•		Performance Sp	ecs: (25A)		Test Times	Run 1	Run 2	Run 3	}
Cal Error*	2% (Cdir-Cv) /	cs		5% (Cs-Cv)/	Cv	;	Start Time	8:33	10:19	12:17	13:47
Bies* (SB)	5% (Cs-Cdir) /	CS		5% (Cs-Cv) / F	Range	E	End Time	9:34	11:20	13: 9	14:48
	3% SBf-SBI	h h		3% (Csi-Csf) /	Range						
wifemate spec	ification: 0.5 ppm	v absolute di	uerence					1. II 3	?		

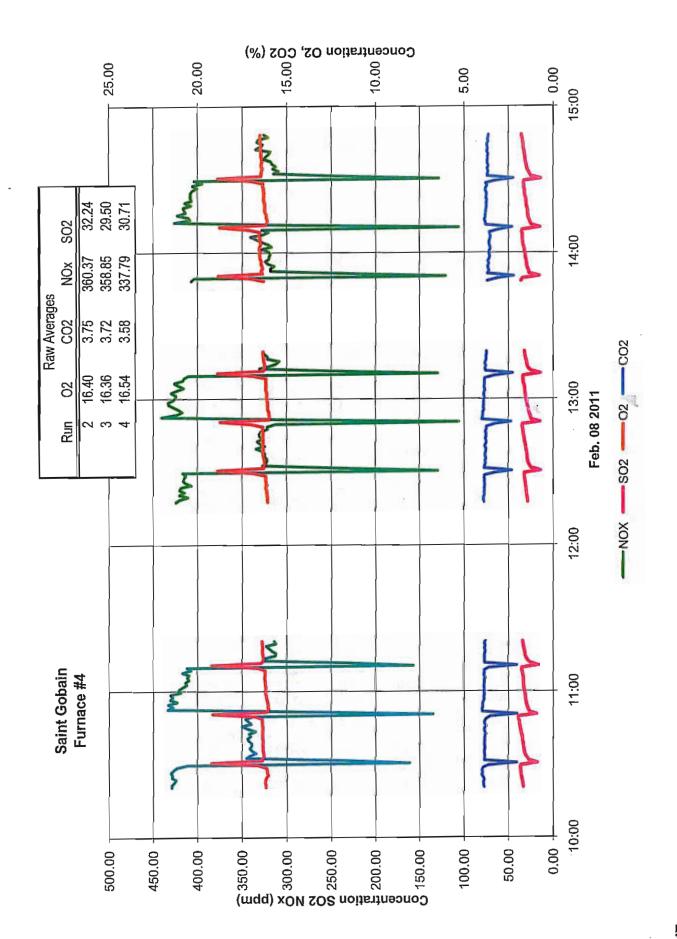
Ferformed 15+15 min of fun 10+2.

Performed 15+15 min of fun 10+2.

Pun 1 discorded becouse bias line melted.

Furnace # 3

Pags 02 (02 Hot Line Temp 247


Run 1 20,0 3.3 Hot Line Temp

Run 2 19.9 3.6

Run 3 19.8 3.6

Saint Gol	bain Containers					initial	Final	Cylinder	_			
Furnace 2/8/201	Na. 4	Cylinder ID	Range	Cylinder Value Cv	Analyzer Calibration Response Cdir	System Calibration Response Csi	System Calibration Response Csf	Value Percent of Span	Analyzer Calibration Error < 2%	Initial System Blas < 5%	Final System Blas < 5%	Drift < 3%
OXYGE	 N				-		00.	<u> </u>		- 070	0,0	
Run 1	High Concentration Mid-Conc. High Zero	R-Mix20-AmT R-Mix26-AmT R-Mix29-AmT	25 25 25	22.22 12.02 0.0	22.26 11.9 0.02	11.8 0.01	11.85 -0.02	100% 54% 0%	0.2% 0.5% 0.1%	-0.5% 0.0%	-0.2% -0.2%	0.2% 0.1%
Run 2			25 25 25		22.26 11.9 0.02	11.85 -0.02	11.92 0.01			-0.2% -0.2%	0.1% 0.0%	0.3% 0.1%
Run 3			25 25 25		22,26 11,9 0.02	11.92 0.01	11.81 -0.06			0.1% 0.0%	-0.4% -0.4%	0.5% 0.3%
Run 4			25 25 25		22.26 11.9 0.02	11.81 -0.08	11.8 -0.07			-0.4% -0.4%	-0.5% -0.4%	0.0%
CARBO	N DIOXIDE											
Run 1	High Concentration Mid-Conc. High Zero	R-Mix20-AmT R-Mix26-AmT R-Mix29-AmT	25 25 25	21.23 12.05 0.0	21.24 11.99 0.03	11.93 -0.03	11. 9 7 0	100% 57% 0%	0.0% 0.3% 0.1%	-0.3% -0.3%	-0.1% -0.1%	0.2% 0.1%
Run 2			25 25 25		21.24 11.99 0.03	11.97 0	11.98 0.1			-0.1% -0.1%	0.0% 0.3%	0.0% 0.5%
Run 3			25 25 25		21.24 11.99 0.03	11.98 0.1	12 -0.03			0.0% 0.3%	0.0% -0.3%	0.1% 0.6%
Run 4			25 25 25		21.24 11.99 0.03	12 -0.03	12 -0.07			0.0% -0.3%	0.0% -0.5%	0.0% 0.2%
NITROG	EN OXIDES											
Run 1	High Concentration Mid-Conc. High Mid-Conc. Low Zero	R-Mix28-AmT R-Mix30-AmT R-Mix26-AmT R-Mix29-AmT	1,000 1,000 1,000 1,000	968 527 24.5 0.0	968 521 5.09 0.45	51 6 0.45	501 0.09	100% 54% 3% 0%	0.0% 0.6% 2.0% 0.0%	-0.5% 0.0%	-2.1% 0.0%	1.5% 0.0%
Run 2			1,000 1,000 1,000 1,000		968 521 5.09 0.45	501 25.92 0.09	494 25.51 0.41			-2.1% 2.2% 0.0%	-2.8% 2.1% 0.0%	0.7% 0.0% 0.0%
Run 3			1,000		968 521	0 4 9 4	491			-2.8%	-3.1%	0.3%
			1,000 1,000		5.09 0.45	0.41	0.99			0.0%	0.1%	0.1%
Run 4			1,000 1,000 1,000 1,000		968 521 5.09 0.45	491 0.99	489 0.65			-3.1% 0.1%	-3.3% 0.0%	0.2% 0.0%
							0.03				0.076	0.078
	DIOXIDE	R-Mix31-AmT	ED	40 5	40 E			1009/	0.00/			
Run 1	High Concentration Mld-Conc. High Zero	R-Mix29-AmT R-Mix28-AmT	50 60 50	48.5 25.7 0.0	48.5 25.65 0.12	25.3 0.6	25.75 1.49	100% 53% 0%	0.0% 0.3% 0.2%	-0.5% 1.0%	0.4% 2.8%	0.9% 1.8%
Run 2			50 50 50		48.5 25.55 0.12	25.75 1.49	27.14 1.76			0.4% 2.8%	3.3% 3.4%	2.9% 0.6%
ໃນກ 3			50 50 50	RE-CAL:	48.32 25.56 -0.08	26.02 1.11	25.62 0.94		0.4% 0.3% 0.2%	0.9% 2.5%	0.1% 2.1%	0.8% 0.4%
Run 4			50 50 50		48.32 25.56 -0.08	25.62 0.94	27.14 1.76			0.1% 2.1%	3.3% 3.8%	3.1% 1.7%

Part 60, Appendix A, Method 7E, Section 12.0 and Section 9.0 Summary Table of QA/QC; Method 25A

Saint Gobain Furnace #4

Exhaust

Raw Averages								
	Run	02	CO2	NOx	SO2			
	1	18.37	2.14	193.83	17.41			
	2	16.40	3.75	360.37	32.24			
	3	16.36	3.72	358.85	29.50			
	4	16.54	3.58	337.79	30.71			

Date						
Started Test:	1	8:33:00	<u>O2</u>	CO2	<u>NOx</u>	SO2
Feb. 08 2011		8:33:29	16.604	3.577	323.534	28.123
Feb. 08 2011		8:34:29	17.853	2.546	230.024	21.406
Feb. 08 2011		8:35:29	18.086	2.366	202.314	18.641
Feb. 08 2011		8:36:29	18.208	2.266	191.138	17.764
Feb. 08 2011		8:37:29	18.437	2.089	180.018	16.644
Feb. 08 2011		8:38:29	18.775	1.788	154.652	14.319
Feb. 08 2011		8:39:29	18.592	1.949	161.108	15.092
Feb. 08 2011		8:40:29	18.41	2.096	176.65	16.489
Feb. 08 2011		8:41:29	18.403	2.103	184.29	17.312
Feb. 08 2011		8:42:29	18.404	2.114	182.749	17.213
Feb. 08 2011		8:43:29	18.388	2.119	183.716	17.748
Feb. 08 2011		8:44:29	18.381	2.124	184.065	18.054
Feb. 08 2011		8:45:29	18.378	2.136	185.604	18.192
Feb. 08 2011		8:46:29	18.372	2.143	178.057	18.536
Feb. 08 2011		8:47:29	18.344	2.147	183.797	18.988
Feb. 08 2011		8:48:29	18.385	2.135	181.996	19.09
Feb. 08 2011		8:49:29	18.546	1.98	180.07	18.873
Feb. 08 2011		8:50:29	19.932	1.075	76.419	9.106
Feb. 08 2011		8:51:29	18.204	2.277	146.677	13.324
Feb. 08 2011		8:52:29	18.172	2.268	243.683	14.284
Feb. 08 2011		8:53:29	18.172	2.226	232.971	14.998
Feb. 08 2011		8:54:29	18.186	2.21	236.682	15.409
Feb. 08 2011		8:55:29	18.171	2.268	224.317	16.2
Feb. 08 2011		8:56:29	18.171	2.232	226.982	16.757
Feb. 08 2011		8:57:29	18.244	2.164	235.072	16.692
Feb. 08 2011		8:58:29	18.279	2.165	235.395	16.542
Feb. 08 2011		8:59:29	18.272	2.156	233.349	16.805
Feb. 08 2011		9:00:29	18.293	2.148	231.799	17.109
Feb. 08 2011		9:01:29	18.316	2.152	227.174	16.892
Feb. 08 2011		9:02:29	18.309	2.146	226.43	17.424
Feb. 08 2011		9:03:29	18.332	2.143	229.616	17.554
Feb. 08 2011		9:04:29	18.364	2.15	225.002	17.588
Feb. 08 2011		9:05:29	18.328	2.143	227.037	17.947
Feb. 08 2011		9:06:29	18.344	2.128	228.585	18.433
Feb. 08 2011		9:07:29	18.335	2.157	216.558	18.384
Feb. 08 2011		9:08:29	18.335	2.157	220.09	18.776
Feb. 08 2011		9:09:29	18.519	2.002	217.538	18.964
Feb. 08 2011		9:10:29	19.929	1.136	90.812	9.542

Feb. 08 2011		9:11:29	18.315	2.234	122.271	14.266
Feb. 08 2011		9:12:29	18.252	2.25	179.744	15.51
Feb. 08 2011		9:13:29	18.212	2.245	181.733	16.686
Feb. 08 2011		9:14:29	18.285	2.184	175.911	17.056
Feb. 08 2011		9:15:29	18.274	2.207	180.336	17.491
Feb. 08 2011		9:16:29	18.283	2.17	183.35	17.831
Feb. 08 2011		9:17:29	18.302	2.174	184.32	17.992
Feb. 08 2011		9:18:29	18.35	2.158	185.958	17.934
Feb. 08 2011		9:19:29	18.297	2.169	189.879	18.561
Feb. 08 2011		9:20:29	18.292	2.196	186.065	19.13
Feb. 08 2011		9:21:29	18.311	2.163	184.337	19.067
Feb. 08 2011		9:22:29	18.317	2.162	186.605	19.605
Feb. 08 2011		9:23:29	18.34	2.182	178.831	19.509
Feb. 08 2011		9:24:29	18.368	2.153	183.224	19.611
Feb. 08 2011		9:25:29	18.349	2.151	185.642	19.967
Feb. 08 2011		9:26:29	18.389	2.156	182.594	20.108
Feb. 08 2011		9:27:29	18.386	2.16	180.4	20.326
Feb. 08 2011		9:28:29	18.366	2.154	184.942	20.925
Feb. 08 2011		9:29:29	18.537	2.038	181.443	20.97
Feb. 08 2011		9:30:29	19.923	1.108	74.835	10.391
Feb. 08 2011		9:31:29	18.199	2.28	154.393	15.098
Feb. 08 2011		9:32:29	18.17	2.272	243.248	15.928
Feb. 08 2011		9:33:29	18.184	2.233	237.488	16.754
Stopped Test:	1	9:34:11				
Started Test:	2	10:19:41	40.45			
Feb. 08 2011		10:20:29	16.15	3.849	428.478	33.029
Feb. 08 2011		10:21:29	16.147	3.886	428.416	33.435
Feb. 08 2011		10:22:29	16.184	3.895	425.725	33.833
Feb. 08 2011		10:23:29	16.17	3.839	423.563	34.453
Feb. 08 2011		10:24:29	16.121	3.893	428.026	34.866
Feb. 08 2011		10:25:29	16.014	3.982	427.781	35.572
Feb. 08 2011		10:26:29	16.071	3.939	429.473	35.718 35.993
Feb. 08 2011 Feb. 08 2011		10:27:29 10:28:29	16.084	3.969	426.687 422.98	
Feb. 08 2011		10:28:29	16.126	3.913		36.464
Feb. 08 2011		10:29:29	16.559	3.605 2.01	410.818	35.754
Feb. 08 2011		10:30:29	19.197 16.369	3.838	160.47 231.821	17.617 26.918
Feb. 08 2011		10:31:29	16.305	3.82	344.589	28.948
Feb. 08 2011		10:32:29	16.272	3.815	340.575	30.695
Feb. 08 2011		10:34:29	16.289	3.843	333.99	31.798
Feb. 08 2011		10:35:29	16.318	3.835	338.25	32.127
Feb. 08 2011		10:36:29	16.324	3.797	340.883	32.678
Feb. 08 2011		10:37:29	16.331	3.831	338.657	33.086
Feb. 08 2011		10:38:29	16.33	3.833	338.682	33.337
Feb. 08 2011		10:39:29	16.326	3.815	342.038	34.044
Feb. 08 2011		10:40:29	16.348	3.826	343.575	34.235
Feb. 08 2011		10:41:29	16.347	3.813	339.933	34.509
Feb. 08 2011		10:42:29	16.36	3.775	342.034	35.352
Feb. 08 2011		10:43:29	16.35	3.84	334.66	35.901
Feb. 08 2011		10:44:29	16.328	3.836	343.428	36.454
Feb. 08 2011		10:45:29	16.35	3.763	349.645	37.115
Feb. 08 2011		10:46:29	16.366	3.827	339.502	37.569

Feb. 08 2011		10:47:29	16.374	3.827	342.475	37.597
Feb. 08 2011		10:48:29	16.363	3.751	345.69	38.636
Feb. 08 2011		10:49:29	16.731	3.515	338.48	38.643
Feb. 08 2011		10:50:29	19.131	2.008	134.105	18.519
Feb. 08 2011		10:51:29	16.115	3.958	277.84	26.39
Feb. 08 2011		10:52:29	15.994	3.972	433.144	27.926
Feb. 08 2011		10:53:29	16.051	3.926	427.26	28.81
Feb. 08 2011		10:54:29	16.043	3.949	432.489	29.666
Feb. 08 2011		10:55:29	16.073	3.91	422.351	30.233
Feb. 08 2011		10:56:29	16.107	3.846	430.247	30.598
Feb. 08 2011		10:57:29	16.132	3.876	427.421	30.721
Feb. 08 2011		10:58:29	16.159	3.839	430.374	31.041
Feb. 08 2011		10:59:29	16.184	3.857	418.259	31.587
Feb. 08 2011		11:00:29	16.18	3.844	420.611	31.94
Feb. 08 2011		11:01:29	16.156	3.851	416.651	32.652
Feb. 08 2011		11:02:29	16.195	3.857	411.649	32.965
Feb. 08 2011		11:03:29	16.207	3.834	413.115	32.939
Feb. 08 2011		11:04:29	16.22	3.834	409.121	33.042
Feb. 08 2011		11:05:29	16.233	3.814	411.039	33.182
Feb. 08 2011		11:06:29	16.214	3.873	409.035	33.816
Feb. 08 2011		11:07:29	16.213	3.841	416.559	34.345
Feb. 08 2011		11:08:29	16.218	3.844	406.904	35.03
Feb. 08 2011		11:09:29	16.585	3.602	411.497	34.85
Feb. 08 2011		11:10:29	19.202	2.025	156.516	17.281
Feb. 08 2011		11:11:29	16.43	3.821	226.082	25.749
Feb. 08 2011		11:12:29	16.313	3.833	326.721	28.525
Feb. 08 2011		11:13:29	16.289	3.827	323.555	30.209
Feb. 08 2011		11:14:29	16.321	3.836	312.714	31.203
Feb. 08 2011		11:15:29	16.348	3.811	311.742	31.358
Feb. 08 2011		11:16:29	16.359	3.785	316.335	31.951
Feb. 08 2011		11:17:29	16.344	3.834	319.464	32.506
Feb. 08 2011		11:18:29	16.348	3.795	322.706	33.295
Feb. 08 2011		11:19:29	16.361	3.839	311.84	33.702
Feb. 08 2011		11:20:29	16.374	3.796	313.81	34.009
Stopped Test:	2	11:20:48				
Started Test:	3	12:17:07				
Feb. 08 2011		12:17:29	16.073	3.861	424.055	28.403
Feb. 08 2011		12:18:29	16.088	3.888	420.322	28.432
Feb. 08 2011		12:19:29	16.074	3.878	410.525	29.117
Feb. 08 2011		12:20:29	16.103	3.839	419.887	29.374
Feb. 08 2011		12:21:29	16.105	3.859	414.322	29.772
Feb. 08 2011		12:22:29	16.127	3.83	419.762	29.976
Feb. 08 2011		12:23:29	16.179	3.835	418.215	30.345
Feb. 08 2011		12:24:29	16.132	3.818	407.004	30.888
Feb. 08 2011		12:25:29	16.152	3.832	413.167	31.128
Feb. 08 2011		12:26:29	16.168	3.828	415.877	31.363
Feb. 08 2011		12:27:29	16.168	3.85	414.423	31,905
Feb. 08 2011		12:28:29	16.195	3.826	412.7	32.184
Feb. 08 2011		12:29:29	16.869	3.282	416.298	31.946
Feb. 08 2011		12:30:29	18.879	2.289	128.8	13.989
Feb. 08 2011		12:31:29	16.295	3.847	236.36	24.726
Feb. 08 2011		12:32:29	16.25	3.813	326.857	26.35

Feb. 08 2011		12:33:29	16.23	3.77	323.269	27.802
Feb. 08 2011		12:34:29	16.244	3.791	321.948	28.547
Feb. 08 2011		12:35:29	16.272	3.744	322.558	28.916
Feb. 08 2011		12:36:29	16.305	3.801	324.925	29.028
Feb. 08 2011		12:37:29	16.332	3.782	324.397	29.263
Feb. 08 2011		12:38:29	16.308	3.751	326.989	29.862
Feb. 08 2011		12:39:29	16.315	3.746	333.941	30.364
Feb. 08 2011		12:40:29	16.315	3.822	324.716	30.789
Feb. 08 2011		12:41:29	16.325	3.743	329.25	31.161
Feb. 08 2011		12:42:29	16.319	3.729	332.731	32.075
Feb. 08 2011		12:43:29	16.333	3.779	326.477	32.157
Feb. 08 2011		12:44:29	16.329	3.737	329.909	32.678
Feb. 08 2011		12:45:29	16.328	3.736	331.162	33.367
Feb. 08 2011		12:46:29	16.34	3.78	328.808	33.64
Feb. 08 2011		12:47:29	16.339	3.719	321.701	33.925
Feb. 08 2011		12:48:29	16.338	3.717	321.436	34.55
Feb. 08 2011		12:49:29	17	3.272	312.681	34.072
Feb. 08 2011		12:50:29	18.729	2.328	105.83	14.643
Feb. 08 2011		12:51:29	15.976	3.978	303.372	24.685
Feb. 08 2011		12:52:29	15.968	3.938	439.847	25.343
Feb. 08 2011		12:53:29	15.994	3.918	423.034	26.284
Feb. 08 2011		12:54:29	15.993	3.926	416.839	27.22
Feb. 08 2011		12:55:29	16.066	3.855	420.544	27.635
Feb. 08 2011		12:56:29	16.079	3.902	426.12	28.316
Feb. 08 2011		12:57:29	16.073	3.869	431.972	29.091
Feb. 08 2011		12:58:29	16.08	3.885	432.948	29.462
Feb. 08 2011		12:59:29	16.093	3.874	427.029	30.199
Feb. 08 2011		13:00:29	16.13	3.822	424.228	30.682
Feb. 08 2011		13:01:29	16.114	3.872	424.063	30.873
Feb. 08 2011		13:02:29	16.113	3.854	429.201	31.425
Feb. 08 2011		13:03:29	16.168	3.798	422.578	31.702
Feb. 08 2011		13:04:29	16.182	3.835	415.16	31.824
Feb. 08 2011		13:05:29	16.162	3.833	420.834	32.322
Feb. 08 2011		13:06:29	16.165	3.829	425.785	33.179
Feb. 08 2011		13:07:29	16.172	3.841	416.266	33.564
Feb. 08 2011		13:08:29	16.165	3.803	414.668	33.801
Feb. 08 2011		13:09:29	16.907	3.295	409.855	33.404
Feb. 08 2011		13:10:29	18.871	2.237	128.926	14.478
Feb. 08 2011		13:11:29	16.333	3.756	248.962	24.861
Feb. 08 2011		13:12:29	16.214	3.798	330.039	27.58
Feb. 08 2011		13:13:29	16.221	3.747	319.193	28.906
Feb. 08 2011		13:14:29	16.249	3.808	311.768	29.457
Feb. 08 2011		13:15:29	16.284	3.765	308.285	29.868
Feb. 08 2011		13:16:29	16.29	3.724	321.284	30.658
Feb. 08 2011		13:17:29	16.314	3.748	321.566	31.201
Feb. 08 2011		13:18:29	16.327	3.711	325.28	31.74
Feb. 08 2011		13:19:29	16.334	3.723	326.625	32.159
Stopped Test:	3	13:19:44				

Started Test:	4	13:47:30				
Feb. 08 2011	•	13:48:29	16.302	3.689	406.991	36.398
Feb. 08 2011		13:49:29	17.043	3.128	403.465	34.491
Feb. 08 2011		13:50:29	18.844	2.2	120.157	15.75
Feb. 08 2011		13:51:29	16.369	3.678	230.416	27.33
Feb. 08 2011		13:52:29	16.435	3.595	318.401	27.732
Feb. 08 2011		13:53:29	16.356	3.638	318.186	28.967
Feb. 08 2011		13:54:29	16.388	3.657	313.932	29.858
Feb. 08 2011		13:55:29	16.435	3.597	320.998	29.929
Feb. 08 2011		13:56:29	16.424	3.66	323.97	30.453
Feb. 08 2011		13:57:29	16.489	3.585	320.154	30.906
Feb. 08 2011		13:58:29	16.503	3.549	319.61	31.562
Feb. 08 2011		13:59:29	16.522	3.585	318.226	31.492
Feb. 08 2011		14:00:29	16.462	3.59	320.34	32.407
Feb. 08 2011		14:01:30	16.546	3.519	327,479	32.711
Feb. 08 2011		14:02:29	16.508	3.541	316.976	33.194
Feb. 08 2011		14:03:30	16.444	3.586	321.148	34.075
Feb. 08 2011		14:04:29	16.477	3.593	327.994	34.419
Feb. 08 2011		14:05:29	16.491	3.547	333.594	34.647
Feb. 08 2011		14:06:29	16.506	3.516	340.337	34.922
Feb. 08 2011		14:07:29	16.555	3.542	326.877	34.727
Feb. 08 2011		14:08:30	16.498	3.568	320.755	35.41
Feb. 08 2011		14:09:29	17.143	3.052	327.717	34.957
Feb. 08 2011		14:10:29	18.765	2.294	105.745	15.284
Feb. 08 2011		14:11:29	16.188	3.782	306.166	24.942
Feb. 08 2011		14:12:29	16.115	3.788	425.599	26.222
Feb. 08 2011		14:13:29	16.1	3.853	408.214	27.293
Feb. 08 2011		14:14:29	16.163	3.809	409.832	28.117
Feb. 08 2011		14:15:29	16.155	3.8	422.365	28.676
Feb. 08 2011		14:16:30	16.217	3.783	413.232	28.96
Feb. 08 2011		14:17:29	16.251	3.777	414.467	29.044
Feb. 08 2011		14:18:29	16.233	3.733	415.849	29.622
Feb. 08 2011		14:19:29	16.234	3.733	407.519	30.338
Feb. 08 2011		14:20:29	16.254	3.743	413.882	30.332
Feb. 08 2011		14:21:29	16.291	3.713	406.356	30.752
Feb. 08 2011		14:22:29	16.305	3.76	407.571	30.926
Feb. 08 2011		14:23:29	16.286	3.736	407.855	31.969
Feb. 08 2011		14:24:29	16.279	3.726	407.604	32.361
Feb. 08 2011		14:25:29	16.306	3.8	405.396	32.294
Feb. 08 2011		14:26:29	16.3	3.786	400.289	32.995
Feb. 08 2011		14:27:29	16.364	3.696	405.328	33.055
Feb. 08 2011		14:28:29	16.341	3.78	394.58	33.563
Feb. 08 2011		14:29:29	17.026	3.238	403.559	32.873
Feb. 08 2011		14:30:29	18.887	2.235	127.857	14.528
Feb. 08 2011		14:31:29	16.454	3.69	241.083	25.436
Feb. 08 2011		14:32:29	16.443	3.662	314.788	27.082
Feb. 08 2011		14:33:29	16.423	3.64	309.384	28.401
Feb. 08 2011		14:34:29	16.368	3.703	315.578	29.766
Feb. 08 2011		14:35:29	16.429	3.616	312.111	30.271
Feb. 08 2011		14:36:29	16.431	3.686	316.755	30.691
Feb. 08 2011		14:37:29	16.391	3.689	317.92	31.465
Feb. 08 2011		14:38:29	16.41	3.666	325.642	31.875

Feb. 08 2011		14:39:29	16.441	3.666	323.558	32.004
Feb. 08 2011		14:40:29	16.45	3.634	320.208	32.487
Feb. 08 2011		14:41:29	16.439	3.706	318.336	32.69
Feb. 08 2011		14:42:29	16.446	3.664	334.497	33.384
Feb. 08 2011		14:43:29	16.458	3.687	329.917	33.808
Feb. 08 2011		14:44:29	16.455	3.71	326.966	33.843
Feb. 08 2011		14:45:29	16.475	3.626	333.189	34.286
Feb. 08 2011		14:46:29	16.489	3.662	331.454	34.687
Feb. 08 2011		14:47:29	16.49	3.633	320.79	35.2
Feb. 08 2011		14:48:29	16.493	3.608	325.759	35.698
Stopped Test:	4	14:48:55				

3-Point Stratification Check

Saint Gobain Furnace #4 Exhaust

Pt-1 Pt-2 Pt-3 Mean	O2 16.16 16.07 17.06 16.43	CO2 3.87 3.95 3.34 3.72	NOx 426.55 427.99 306.52 387.02	SO2 33.69 35.54 29.19 32.80			
Pt-1 diff. from mean Pt-2 diff. from mean Pt-3 diff. from mean	1.64% 2.19% 3.83%	4.01% 6.12% 10.13%	10.21% 10.59% 20.80%	2.69% 8.33% 11.02%			
Results based on % difference from mean Traverse: O2 CO2 NOx SO2							
1-pt (<5% difference)	yes	no	no	no			
3-pt (<10% difference)	no	no	no	no			
12-pt (>10% difference)	no	yes	yes	yes			

Pt-1 absolute difference	0.27	0.15	39.53	0.88				
Pt-2 absolute difference	0.36	0.23	40.97	2.73				
Pt-3 absolute difference	0.63	0.38	80.50	3.62				
Descrite hand on absolute difference in concentration								
Results based on absolute difference in concentration								
<u>Traverse:</u>	02	CO2	NOx	SO2				
1-pt (<0.5ppm difference)	no	yes	no	no				
3-pt (<1ppm difference)	yes	no	no	no				
12-pt (>1ppm difference)	no	no	yes	yes				

Furnace No. 4: Flow Rate and Moisture
Results and Example Calculations
Field Data
Moisture Catch Field Data & Worksheets
Traverse Point Locations

Flow Rate and Moisture

Client	Saint Gob	ain	Fe	b. 08 2011	Da	ate
Source	Furnace #	4		PS	OI	perator
Location	Exhaust			4212	Jo	b#
				mew	At	nalyist/QA
Definitions	Symbol	Units	Run 2	Run 3	Run 4	Average
Time, Starting			10:19	12:17	13:47	
Time, Ending			11:20	13:19	14:48	Ì
Volume, Gas sample	Vm	dcf	33.668	33.579	33.501	33.58
Temperature, Dry gas meter	Tm	°F	54.31	52.15	53.88	53.44
Temperature, Stack gas	Ts	°F	362.79	364.83	365.58	364.40
Pressure differential across orifice	dH	in H2O	1.100	1.100	1.100	1.10
Average square root velocity pressure	dp^1/2	in H2O^1/2	0.751	0.678	0.699	
Pitot tube coefficient	Cp		0.8387	0.8387	0.8387	}
Dry gas meter calibration factor	Y		0.98370	0.98370	0.98370	
Pressure, Barometric	Pbar	in Hg	30.30	30.30	30.30	ļ
Pressure, Static Stack	Pg	in H2O	-0.7	-0.7	-0.7	J
Time, Total sample	Ø	min	60	60	60	60
Stack Area	As	in ²	1272.4	1272.4	1272.4	
Nozzle Area	An	in ²	0.0491	0.0491	0.0491	}
Volume of condensed water	Vlc	ml	40.4	38.4	42.4	40.4
Oxygen		% O2	16.60	16.56	16.74	16.63
Carbon Dioxide		% CO2	3.75	3.71	3.57	3.67
Molecular weight, Dry Stack	Md	lbm / lbmole	29.39	29.38	29.36	29.38
Pressure, Absolute Stack	Ps	in Hg	30.25	30.25	30.25	30.25
Pressure, avg arcoss orifice	Po	in Hg	30.38	30.38	30.38	30.38
Volume, Dry standard gas sample	Vm(std)	dscf	34.52	34.58	34.38	34.49
Volume, Water Vapor	Vw(std)	scf	1.90	1.81	2.00	1.90
Moisture, % Stack (EPA 4)	Bws(1)	%	5.22	4.97	5.49	5.23
Moisture, % Stack (Psychrometry-Sat)	Bws(2)	%	na	na	na	
Moisture, % Stack (Theoretical)	Bws(3)	%	na	na	na	
Moisture, % Stack (Psychrometry)	Bws(4)	%	na	na	na	[
Moisture, % Stack (Predicted)	Bws(5)	%	na	na	na	
Mole Fraction dry Gas	mfg		94.8%	95.0%	94.5%	94.8%
Molecular weight, Wet Stack	Ms	lbm / lbmole	28.79	28.81	28.74	28.78
Velocity, Stack gas	vs	fpm	3,140	2,838	2,928	2,969
Volumetric Flowrate, Actual	Qa	acf/min	27,748	25,076	25,872	26,232
Volumetric Flowrate, Dry Standard	Qsd	dscf/min	17,057	15,417	15,805	16,093

Client: Saint Gobain Source Furnace No. 4 Date 2/8/2011
Project # 4212

Run #_2_

Molecular Weights (lb/lbmol):

$CO_2^{-44.01}$ $O_2^{-51.999}$ $N_2^{+}A_1^{-20.194}$ $N_2^{-0.194}$ $N_2^{-0.195}$ $N_2^{-0.194}$	CO ₂ =44.01	$O_2 = 31.999$	N ₂ +Ar=28.154	H ₂ O=18.015	atm=28.965
---	------------------------	----------------	---------------------------	-------------------------	------------

Constants:

Pstd(1)=29.92129 in Hg Tstd=527.67 °R Kp=5129.4 C2=816.5455inHg in²/°R ft²

Pressure, Absolute Stack (Ps):

Ps, inHg =
$$P_{\text{Barometric}} + \frac{P_{\text{static}}}{13.6} = \frac{20.2}{13.6} \text{ inHg} + \frac{-0.7}{13.6} \text{ in H2O} = \frac{30.25}{13.6} \text{ inHg}$$

Volume, Dry Standard Gas Sample (Vm[std]): $Tm = 52.2 \circ F + 459.7 = 511.9 \circ R$

Orifice Pr ess = Pb
$$\frac{30.3}{13.6}$$
 in Hg + $\frac{(. \cdot \cdot \cdot) \Delta H}{13.6}$ = $\frac{30.38}{13.6}$ in Hg

$$Vm(std) ft^{3} = \frac{Y \times MeterVol \times Tstd \times Orifice \Pr{es(Po)}}{Pstd(1) \times Tm \circ R}$$

$$= \frac{0.98370 \times 93.579 ft^{3} \times 527.67 \circ R \times (Po30.38 inHg)}{29.9213 inHg \times 511.9 \circ R} = \frac{94.57}{29.9213 inHg} = \frac{94.57$$

Moisture, % Stack Gas (bws): $V_{wstd} = 0.04707 \times Cond.H2O, ml = 0.04707 \times 38.4 ml = [.8] scf$ $bws = 100 \times \frac{V_{wstd}}{V_{wstd} + V_{mstd}} = \frac{1.9 scf}{1.9 scf + 34.57 dscf} = \frac{4.98}{4.98}\%$

$$1 - \frac{\text{bws}}{100} = 1 - \frac{4.98\%}{100} = 0.9502$$

Molecular Weight, Dry, Stack (Md):

$$Md\frac{lb}{lbmol} = \left[(1 - \frac{O_2}{100} - \frac{CO_2}{100}) \times MolWtN2Ar \right] + \left[\frac{O_2}{100} \times MolWtO2 \right] + \left[\frac{CO_2}{100} \times MolWtCO2 \right]$$

$$= \left[(1 - \frac{16.56 \% O_2}{100} - \frac{3.71 \% CO_2}{100}) \times 28.154 \frac{lb}{lbmol} \right] + \left[\frac{16.56 \% O_2}{100} \times 31.999 \frac{lb}{lbmol} \right] + \left[\frac{3.71 \% CO_2}{100} \times 44.010 \frac{lb}{lbmol} \right] = \frac{29.38 - \frac{lb}{lbmol}}{lbmol}$$

Client: Saint Gobain

Date 2/8/2011

Molecular Weight, Wet, Stack (Ms):

$$Ms \frac{lb}{lbmol} = (Md \times mfg) + (MolWtH_2O \times (1 - mfg)) = \left(\frac{29.30 lb}{lbmol} \times 0.9502\right) + (18.015 \times (1 - 9502))$$

$$= \frac{29.80 lbmol}{lbmol}$$

Stack gas (vs):
$$Ts = 3.4.8 \circ F + 459.7 = 824.5 \circ R$$

$$= vs \frac{feet}{\min} = Kp \times Cp \times dp \sqrt{inH_2O} \times \sqrt{\frac{Ts \circ R}{Ps \times Ms}}$$

$$=5129.4 \, ft \, / \, \min \dots \times \underbrace{0.8397}_{location} \times \underbrace{0.678}_{dp} \, dp \, \sqrt{inH_2O} \times \sqrt{\frac{0.24.5 \circ R}{20.25}_{inHg} \times 28.8 \mid \frac{lb}{lbmol}} = \underbrace{2.037}_{location} \times \underbrace{\frac{ft}{min}}_{location}$$

Flow Rate, Actual (Qa):

$$Qa \frac{actualCubicFeet}{\min} = \frac{AreaStack \times vs}{144} = \frac{1272.4 \text{ in}^2 \times 2.837}{144} \frac{ft}{\min} = 25.068 \text{ acfm}$$

Flow Rate, Dry Standard (Qsd):

$$Qsd \frac{dryStdFt^{3}}{min} = \frac{Qa \times Tstd \times mfg \times Ps}{Pstd(1) \times Ts \circ R} = \frac{25,060}{29.9213inHg \times 824.5} \circ R$$

$$1 \leq 417 \qquad dscf$$

EPA M-23 Field Data Sheet

Stack Diagram

HORIZON ENGINEERING

13585 NE Whitaker Way Portland, OR 97230 Phone (503) 255-5050 Fax (503) 255-0505

7-8-11 Date Test Method Concurrent Testing Gasses Run# Operator Busch Support Kling Temperature, Amb (Ta) Moisture Tdb Twb

Press., Static (Pstat) - . 7 Press., Bar (Pb) 30. 3

Client: 5+. 61064 Plant: Seattle July Location: #4, 54+ck Sample Location: Ow let

Probe 35-9 Cp 38387 Heat Set 250 Post-Test Pitot Inspection (NC=no change, D=damaged) Pitot Lk Rate Pre: Hi 0@4 Post 0 @ 5 in H2O@in H2O Lo 0 @ 7 Nozzle NA Sample Box Filter NA Heat Set 250

Meter Box ザブ dH@ 1.8010 Y.9837 Pretest: . 004 cfm 22 Meter

			Yess, Dar (FU) 30 c)		Stack Di	rgram	IATE							
Traverse	Sampling	Clock	_If yes, avg. null angle_ Dry Gas Macr	Velocity Head	Orifice Pressure	Orifice Pressure	Leak C			TRAP	IMPINGE			Y inHg
Point Number	Time min	Time (24 hr)	Reading cuft	in H2) (dPs)	in H2O DESIRED	H2O ACTUAL	*F	*F	Filter *F	·F	Outlet "F	Inlet/Avg	*F	Vacuum inHg
	(dt)	10:19	583 .700	SR# 2		(Hb)	(Ts) Amb;	(Tp) Anab:	(To) Amb:	(Tt) Amb:	(Ti) Amb:	(Tm-in) (Amb;	(Tim-out) Amh:	(Pv)
1 /	2.5	 	585 .48	4656	1.1.	1.1	383	252	249	NA	42	53	51	a
2 2	5.0		586.88	.5365	1.	1	385	250	249	1	43	52	51	2.
, 3	07-5			5196			386	250	247	İ	43	55	51	ス
4 4	10.0		589 .65	.7501			334	250	248		73	57	52	z
5 5	12.5		591.04	.5595			344	250	248		44	23	ب ۲	ス
6 G	15.0		592 .42	4699			353	256	278		46	59	53	ス
, 7	17.5		<u> </u>	.4497			35°C	250	250		46	54	53	ス
8 E	30.0-		595.23	-6467		1	353	250	250		46	59	53	2
, C	22.5		596 .62	,5477			357	750	750		46	59	53	ス
10 . 10	25.0		598.00	.5635			357	250	252		45	59	53	ス
$\eta = H$	27.5		599 . 37	.3976			360	250	250		46	58	53	ス
12 1プ	30.0		GOO .74	.5308			346	250	750		46	18	5-3	٦
13	32,5		602 . 12	1.73			306	250	756		46	58	5-3	ス
14 凡	35.0		603.50	. 1.75			365	250	249		45-	55	53	ス
- 15 (-)	37.5		604 .99	1-91			376	25U	250		75-	56	53	ス
16	40.0		606 <28	1.53			381	250	250		45	56	53	2
17 5	42.5		607.66	. 9980			382	250	249		45	56	53	2
18 6	45.0			. 6718			384	250	740		45-	54	5-3	2
19 7	47.5		610 .43	.3789			356	250	250		45	54	53	7
20 8	50.0	_	611 .83	61469			340	250	250		45	55	5"3	2
21 90	52.5		613 .22	. 1064			357	250	250		46	54	۶٦	7
210	55.0		(l4 . 60	.0957			360	250	250		46	5-6	5≥	72
23 \\	57.5		G15. 98	. 0689			364	250	250			54	572	2
24 12	60.0	11:19	617.368	.0859	4	4	366	250	250	<u> </u>	46	5-4.	5->	2
25							ľ			ľ				

Notes:

EPA M-23 Field Data Sheet

							·							
1		13585 NE	Whitaker Way	ŀ				57.6						
		,	OR 97230				Plant:	Seattl	نها ب					
HOR	EERING	•	03) 255-5050	1			Locatio	n: 5 ta	ck #	11 1.				
		Fax (503)		┥					a: 00		in any			
Date		1-8-1	<u> </u>	-					Cp /		5 K		at Set	
Test M	rent Testing	# <i>H</i>		-			Pitot Li		nspection		Dres Ut	0 @ 4	_	D=damaged)
Run #	3	641		1	Stack Dingran	1	1	@in H2()			0 @ 2		2 @ 4
	or Busin	Support	Kline		ALT-011	_	Nozzle	_		Oven "	32) Im		_	4
	rature, Amb	(Ta)	214	Std TC (ID/°F) <u>7-1/3 /</u>	45	Filter	NA					at Set	210 °F
	re	Tdb	Twb	Stack T(C (ID/°F) <u>4/-5</u>	145	Meter I	Box #	: 3		dH@	.801	0 Y 0	. 9837
			ress., Bar (Pb) 30.3		nuity Check	or ↓	Mete	2r				,003	cfm 2	4 inHg
Cyclon		Clock	If yes, avg. null angle	degrees Velocity Head	Orifice Pressure	Orifice Pressure	Leak C		OVEN	TRAP	Post: .		efm 2	- P
Point	Time	Time	Reading	in H2)	in H2O	H2O		ŀ	Filter	ı	Outlet	Inlet/Avg.	Outle	Vacanum
Number	min (dt)	(24 hr)	cuft (Vm)	SR#2	DESIRED	ACTUAL (dH)	*F {Is}	*F (7p)	*F (To)	*F (Tt)	°F (Ti)	F (Ttu-in)	°F _(Tm-out)	inHg (Pv)
		12:17	617 .700	311-1 0			Amb;	Amb:	Amb	Amb:	Amb:	Atrib:	Amb:	
1 1	1.5		619.17	1.39	1,1	1.1	396	250	250	NA	43	45	45	7
2 2	5.0		620.54	1.73			397	250	249	1	43	50	49	1.
, 3	7:5		621 . 95	1.38			396	250	248		44	52	419	1
4 4	10.0		٠	9691			394	250	250	142 (66)	46	57	48	ı
5 5	12.5		624.74	,7078			359	249	750		46	5-3	49	l
6 6	15.0	C-CO	624.13	9004			347	250	250	1	42	54	-19	1
7 7	17.5			1647		·	350	250	250		47	54	49	1
8 8	20.0		(28 . 90	,1555			356	250	250	3	47	54	50	1
, 9	22.5	7		,1261			360	250	256		47	54	50	ı
10 10	25.0		ـــِــــــــــــــــــــــــــــــــــ	,1190			362	250	150	Ц	47	54	50	1
11 11	৵ৣৢৼ৾		<u> </u>	, 1631			362	250	250		47	54	50	4.3
12 17	30.0		634.38	,0559			360	250	250		47	54	50	
13 1	32.5			,3385			357	2 <i>5</i> U	250		50	56	51	l
14 2	35.0	96	637.12	,5184			345	250	250	<u> </u>	52	56	52	1
15 3	37.5		638 . 48	,6/13			373	250	250	Ц_	54	57	51)
16 4	40.0		639 84	.4808			375	250	750		54	56	51	1
17 5	47.5		641 . 17	,3578			38X	790	250		55	56	51	1
18 6	45.0		642.62	.3899		<u>.</u>	383	250	250		54	56	51	ļ.
19 7	47.5			,1925			387	250	150		53	56	۲,	- 1
20 8	50.0		645:57	,5084			330	250	250	<u> </u>	53		51	1
21 9	52.5		647.00	,1716			33.7	250	250:		53	冬	s)	
22 NO	55.0		(48,44	.6132	s		344	250	249	<u> </u>	52	56	5-1	/
23 11	57.5		649.86	,4719			345	250	751		52	56	5/	1
24 13	60.0	13:17	651.279	,57,07	↓	<i>₩</i> .	344	750	251	J	42	56	51	1
25														
Notes:	:													

* Added Ice

Field Data Sheet

					FIGHT Da	tu bireet							
		13585 N	E Whitaker Way				Clien	t: -</td <td>G06a</td> <td>2.20</td> <td></td> <td></td> <td></td>	G06a	2.20			
377		Portland	d, OR 97230	1			Plant	SPA	Ha i	WA			
HOR	ZON	Phone (503) 255-5050				Locat	ion: ,=	He, a	c-c #	14		
1	ALC:	Fax (503	3) 255-0505	_			Samp	le Locati	ол:	ous	-/E.f-		
Date	<u> </u>	///		_							38.7±	Ieat Set	720 °E
Test Me		4							Inspection	_			, D≂damaged)
Ron#	rent Testin	g <i>Ga&</i>	د	_	0		- 1	k Rate					0 @6
	or MD/	148 Commo	rt 725		Stack Diagra ALT-011			O@in H2	.0	_	O @(O @C
	ature, Ami		(Ta) ~ 52	— Std TC	(ID/°F) -	-		Bura	22	Oven	17_1		01 I4 9
	ė =		Twb		C (ID/°F)			Box 2		1,80			1832
Press., S	Static (Psta	t)7 1	Press., Bar (Pb) 30.	_	Inuity Check		Me				: 0003	_	
_	c Flow Exp		If yes, avg. null angle	degrees			_ Leak	Check			,002		
Traverse Point	Sampling Time	Clock Time	Dry Gas Meter Reading	Velocity Head in H2)	Orifice Pressure in H2O	Orifice Pressure	STAC	PROB	OVEN Filter	IMPINGE Outlet	R METER Inlet/Av		
Number	· min	(24 hr)	cuft (Vm)	(dPr)	DESIRED	ACTUAL (dH)	'F (Ts)	*F	*F	*F	*F	*F	inHg
	[(4)	13-4		1	ļ ·	(ш1)	Amb:	(Tp) Amb:	(To) Amb:	Arizb:	(Tm-in	Amb:	(Pv)
		17.7	652 87	3936	1.1	1 , ,	344	249	3//2	45-		-	+
2 2	2.5		654.31	+	1 1	1//	352	250		45	54	57	+/-
3 3	7.5		655.74	,753 ⁷ ,7784		 	357	250	250	-	55	5-1	+ , -
4 4	10			5500	1	 	360	250	250	76	سبسح	57	
5 \$	12.5		658 . 58	,4199	 	 	364	25C.	250	76	57	51	1
66	15		<u> </u>	.4547		1	369	250	256	46	5>	5-1	1
7	17.5		661.40	, 2933			370	250	250	45	5)	5/	1
8	20		(667 78	. 6029			372	250	249	46	57	51	1
, 9	22.5	100	644.18	15/288			360	250	>50	45-	57	51	1
10/0	25	<u> </u>	645.56	,4434			378	750	250	45	57	51	1
11//	27.5		666 . 95	19141			382	250	250	45	58	51	1
12/0).	30	<u> </u>		4696			390	250	249	45-	58	51	1
1]	32.5			1.67			391	750	750	45	58	51	-1
2 0	35		(71.1)	<u>, 1,39</u>			394	-,	249	.45	58	51	.1.
3 3	37.5	-	(24 66	1,42			395		750	45	58	51	1
44	40	ļ <u>.</u>	673.88	1,11	-		395	250	750	45	57	51	[
5 S	42.5	ļ	(15 , 27	,9831	1		340	250	250	45	57	51	1
7	45	<u> </u>	676 . 66	, 6902			344	250	250	45	57	5/	
2 8 8	47.5		(78 .07	1329	-	-	346	250	250	46	57	51	t t
, 9	50	-	674 . 44	,1218	-		350	250	250	46	57	51	
10/0	52.5			11538	<u> </u>		352	251	250	46	57 ÷2	51	
11//	55		682.23 683.62	10759		1	354 357		751	46	57	51	
12/0	57.5	14:47	685.001	,0549			4			46 47	57	51	/
124 6	60	1 [, 7]	003 .001	10130	<u>~</u>	- Y	,,,,	450	750	-1/	<i>,</i> /		72
27-4												•	

Notes:

Sample Recovery / Moisture Catch

Saint Gobain Furnace #4 Exhaust Feb. 08 2011 PS

4212

Definitions	Symbol	Units	Run 1	Run 2	Run 3 R	un 4	
Impinger Contents							
	Impinger, Contents, Condensate & Rinse						
	Impinger, Contents & Condensate	g		538.00	534.00	538.00	
spg (g/	ml) Impinger	g		304.00	306.00	306.00	
	323 H2O	ml		200.00	200.00	200.00	
	Condensate	g		34.35	28.35	32.35	
Silica Gel Impinger	Final weight	g		526.00	530.00	530.00	
omoa coi impingoi	Initial weight	g		520.00	520.00	520.00	
	Gain	g		6.00	10.00	10.00	
Total Moisture Gain	Condensate + Silica Gel gain	g		40.35	38.35	42.35	
Vlc	Net Moisture Gain	ml		40.43	38.42	42.43	
General Remarks	Sample Appearance Container Marked pH of Condensate						

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

Sample Recovery Worksheet

Client & Source: 5+. Globin -	5 to ch # 4	<u> </u>	Test Date: 2-8-1/
Sample Location: Outlet	·	· · ·	Initials: Busch + Whin
Balance Calibration (1000, 500, 200 g) Need one per each 3-run test	<u> 1003 15</u>	60 1 200	538 504 584 34 534 506 550
IMPINGER CONTENTS Container, condensate & rinse, grams	RUNZ	RUN#3	28 RUN # 4
Container & condensate, grams	538	534	538
Empty container, grams	304	306	306
Initial volume, m! 538	300	200	200
Initial contents	160	H ₂ O	1710
Initial concentration 32	100%	100%	100'1,
Net water gain, ml	38	28	32
Condensate appearance			
Level marked on container			
pH of condensate			
Rinsed with			
Solvent Name and Lot No.			
Solvent Name and Lot No.			
SILICA GEL (w/impinger, top off)		_	
Final weight, grams	<u> 526 </u>	530	530
Initial weight, grams	520	520	520
Net gain, grams			/8
TOTAL MOISTURE GAIN			
Impingers and silica gel, grams	40	<u> 38 </u>	<u>42</u>
FILTERS			
Front filter number			`
Front filter appearance			
Back filter number			-
			74

Traverse Point Locations

Saint Gobain Furnace #4 Exhaust EPA 1 Feb. 08 2011 PS 4212 mew

Outer Circumference	Со	in						_	
Wall thickness	t	in							
INSIDE of FAR WALL to OUTSIDE of Nipple	F	in	43.25	5	Down Stream	n — Disturban	ce		
INSIDE of NEAR WALL to OUTSIDE of Nipple	N	in	3	3 Å		Port			
STACK WALL to to OUTSIDE of Nipple	N-t	in		+	Ds		00		
DOWNstream Disturb	Α	in	144.0)	ll .		K G		
UPstream Disturb	В	in	204.0)	[]		V		
Inner Diameter	Ds	in	40.23	5 B	lí				
Area	As	sqin	1272.4	1 B	N .	Xt			
DOWNstream Ratio	A/Ds	•	3.58	3			15		
UPstream Ratio	B/Ds		5.07	7	Flow				
Minimum #Pts (Particulate)			20	,	<u> </u>	——Disturban	CB		
Minimum #Pts/Diameter			10		/ /	\ Diminion			
Minimum #Pts (NON-Particul	ate)		10		<i></i>	\			
Minimum #Pts/Diameter	,		5	3 /	Up Stream	\			
Actual Points per Diameter			12	2 /	/	\			
Actual Points Used			24			•			
Trav	Fract	Stack	Actual	Nearest	Adjusted	Traverse	Traver	se	
Pt	Stk ID	ID	Points	8ths	Points	Points	Points	S	
#No	(f)	(Ds)	(Dsxf)	(TP)	(TP)	(TP + N)	(TP +	N)	
1	2.13%		0.9			4	4		
2	6.70%	40.3	2.3					3 /	4
3	11.81%	40.3	4.8	3 4.75	4.75	7.75		3 /	4
4	17.73%	40.3	7.					1 /	8
5	25.00%	40.3	10.1	10.125	10.125			1 /	8
6	35.57%	40.3	14.3					3 /	8
7	64.43%	40.3	25.9	25.875	25.875			7 /	8
8	75.00%	40.3	30.2	30.25	30.25	33.25		1 /	4
9	82.27%	40.3	33.1	33.125				1 /	8
10	88.19%	40.3	35.5	35.5	35.5	38.5	38	1 /	2
11	93.30%	40.3	37.6	37.5	37.5	40.5	40	1 /	2
12	97.87%	40.3	39.4	39.375	39.25	42.25	42	1 /	4

Calibration Information

Meter Boxes
Calibration Critical Orifices
Standard Meter
Pitots

Thermocouples and Indicators
Nozzle Diameters (See Furnace 3 Field Data Sheets)
Barometer
Calibration Gas Certificates

pass		H	Allow. Tolerance						
Change (+/-) 0.1% -3.6%		9 19 8 8	100	pass	0.00	pass	0.02	pass	
New 1/10/11 0.98369 1.80102		> 0	0.020	pass	0.000	pass	0.001	pass	
Old 7/10/10 0.98261 1.86551		gH@	1.7697		1.8561		1.7773		1.8010
0.97 <y<1.03 Y= dH@=</y<1.03 		>	0.9848		0.9834		0.9829		0.9837
ò <u> </u>	Time	(min)	9.00		19.00		12.00		
	Ε	(oR)	516.0		517.5		515.0		
011 0.3 (in Hg) 54 (oF) 514 (oR) 26 inches Hg 5.5 inches H20	卢	(oR)	515.0		516.5		514.5	-	
1/10/2011 30.3 (in Hg) 54 (oF) 514 (oR) 26 inches H 5.5 inches H	Meter Tdo	(oF)	55.0	55.0	56.0	57.0	54.0	25.0	
Date Pb= Ta= Tamb 0	Field	(oF)	56.0	58.0	58.0	29.0	55.0	56.0	
	Net	(ft3)	5.4460		5.9670		5.4970		
Leak checks Negative Positive	Meter	(ft3)	526.7	532.146	532.1	538.113	543.9	549.397	i
22	푱	(InH2O)	1.2		0.34		0.69		
	¥		0.46322		40 0.23886		0.35022		
⁷⁴ 8	Critical	Orifice ID	55		40		84		
EPA M-5 #7.2 Horizon Shop 3 6077419 PT	VAC	(in Hg)	20		23		21.5		
Method EP, Location Hor Meter Box ID 3 Meter ID 607 calibrated by PT			Initial	Final	Initial	Final	Initial	Final	

Biannual Meterbox Calibration

LD20911-MB3

	T-	_		_
	Change	(+/-)	0.2%	1.2%
	Post-Test	2/9/11	0.98549	1.82310
	Biannual	1/10/11	0.98369	1.80102
			Υ=	-@Hp
***************************************	2/9/2011 30.2 (in Hg)	55 (aF)	514.7 (oR)	
Ċ	Date	∏a=	Tamb	
EPA M-5 #7.2	norizoni snop D 3		y MB	
Method	Meter Box ID	Meter ID	calibrated by	

Post Test Meterbox Calibration

pass

		Allow. Tolerance						
	dH.		0.00	pass	0.00	pass	0.00	pass
	>	0.020	0.003	pass	0.001	ssed	0.005	pass
	dH@		1.8255		1.8205		1.8233	
	>		0.9822		0.9842		0.9901	
Time	(min)		11.00	L.,	13.00	_	14.00	
£	(Se)		516.5		518.0		520.0	
Ę	(SR)		516.0		516.5		518.0	
Meter	(P)		56.0	56.0	56.0	27.0	57.0	59.0
Field	(S)		58.0	58.0	58.0	61.0	61.0	63.0
, tolk	(ft3)		6.5670		7.7680		8.3470	
rotoM	(ft3)		685.7	692.267	692.267	700.035	700.035	708.382
7	(InHZO)		1.2		1.2		1.2	
7	٤		0.45566		0.45566		0.45566	
Catilia			55		55		55	
747	(in Hg)		18		18		18	
			initial	Final	Initial	Final	Initial	Final

_
Ξ
2011
ם
13
Ð

			_	_		_	_	_	_
bass		Allow, Tolerance							
Change (+/-) 1.3% -3.9%		9 G	10	pass	0.01	pass	0.01	pass	0.00632
New 1/10/11 1.0/123 1.8117		> 0.020	0.007	bass	0.001	pass	0.007	bass	0.00372
Old 7/10/10 0.89962 1.88208		9 (9)	1.8124		1.8237		1.7991		1.8117
0.97 <y<1.03< td=""><td></td><td>></td><td>1.0049</td><td></td><td>1.0132</td><td></td><td>1.0189</td><td></td><td>1.0123</td></y<1.03<>		>	1.0049		1.0132		1.0189		1.0123
9	TIme	(min)	11.00	-	12.00	_	17.00		
	Τm	(oR)	518.5		518.5		519.0		
0/2011 30.3 (in Hg) 54 (oF) 514 (oR) 27 inches Hg 7.1 inches Hg	ပု	(oR)	518.5		518.0		518.5		
1/10/2011 30.3 54 54 514 514	Meter	(oF)	59.0	58.0	58,0	58.0	58.0	9.0	
Date Pb= Pb= Tamb Tamb O in/mln @	Field	(oF)	58.0	59.0	69.0	29.0	59.0	0.09	
	Net	(ff3)	6.5550		5.3690		5.1680		
Leak checks Negative Positive	Meter	(ft3)	173.141	179.696	179.7	185.069	185.1	190.268	
	품	(inH2O)	1.2		0.68		0.31		
	쏘		0.46322		0.35022		0.23886		
	Critical	Orifice ID	55		48		40		
EPA M-5 #7.2 Hortzon Shop 19 7213329 PT	VAC	(in Hg)	22		24		25		
Method Location Meter Box ID Mater ID calibrated by			Initial	Final	Initial	Final	Initial	Final	

Biannual Meterbox Calibration

G020911-MB19

Post Test Meterbox Calibration

Method EPA M-5 #7.2 Location Horizon Shop Meter Box ID 19 Meter ID calibrated by MB

2/9/2011 30.2 (in Hg) 55 (oF) 514.7 (oR) Date Pb= Ta≔ Tamb

pass Biannual Post-Test Change 1/10/11 2/9/11 (+/-) dH@=

			Allow. Tolerance								
		aH@	0.20	0.01	pass	0.00	pass	0.01	pass		
		>-	0.020	0.004	Dass	0.001	pass	0.004	pass		
		919	_	1.8849		1.8747		1.8577		1.8724	
		>-		1.0106		1,0158		1.0190		1.0151	
Time	+	(min)		10.00		11.00	I	11.00		-	<u>1</u>]
	H.	(oR)		515.0		518.0		521.0			
	٦	(OR)		515.0		517.0		519.0			
Meter	орL	(aP)		54.0	56.0	56.0	58.0	58.0	0.09		
Field	ΪĐ	(oF)		54.0	56.0	58.0	62.0	62.0	64.0		
	Net	(ft3)		5.8810		6.4740		6.4910			
	Meter	(#3)		539.5	545.381	545.381	551.855	551.855	558.346		
	픙	(inH2O)		1.2		1.2		1.2			
	¥			0.46322		0.46322		0.46322			
	Critical	(in Hg) Orifice ID		55		55		55			
	VAC	(in Hg)		16	_	16		16			
				Initial	Final	Initial	Final	Initial	Final		

Method EPA M-5 #7.2 Date 2-9-11 Horizon 30.2 Location Pb= (in Hg) 52 19 Meter Box Ta= (oF) NA Meter ID Leak Check Calibrated by Busch Rate in/min 0.000

		Critical Orifice	K	dH inH2O	Meter (ft3)	Tdi (oF)	Tdo (oF)	t (min)
Initial Final	16	53	.46322	1-2	539.500 545.381	56	56	10.0
Initial Final)	.])	545-381	56 62	56	11.0
Initial Final	8	W.	4	8	551.855	67.	5. 8 60	11.0

^{*}If the box leaks or doesn't calibrate for any reason please let report writer know ASAP and document it. Be sure to update new K values from annual calibrations when entering data into spreadsheet.

Comments:

Method	EPA M-5 #7.2	2
Location	Hor:zen	Shop
Meter Box	# 3	
Meter ID	NA	
Calibrated by	Busch	

Leak Check
Rate .000 1 min in/min

	(inHg)	Critical Orifice	К	dH inH2O	Meter (ft3)	Field Tdi (oF)	Meter Tdo (oF)	Time t (min)
Initial Final	18	5.5	.45566	1.2	692.267	56 58	56	11.0
Initial Final				1	700,035	58	56	13.0
Initlal Final		~		4	700.035	61	57 59	14.0

^{*}If the box leaks or doesn't calibrate for any reason please let report writer know ASAP and document it. Be sure to update new K values from annual calibrations when entering data into spreadsheet.

Comments:

^{**}You must collect at least 5 cuft.

^{****}For post-test calibrations in field (New 10.3.2, Old 5.3.2) Select orifice nearest to operational conditions Make 3 runs of 5 cuft each.

^{**}You must collect at least 5 cuft.

^{****}For post-test calibrations in field (New 10.3.2, Old 5.3.2) Select orifice nearest to operational conditions Make 3 runs of 5 cuft each.

Set	Shop #1									Horizon Engineering	gineering	
Job#	in house									13585 NE V	13585 NE Whitaker Way	γý
Date:	12/16/10									Portland, OR 97230	JR 97230	
DGM(X) =	0.99733							•		Phone (503	Phone (503) 255-5050	
DGM ID#	standard									Fax (503	(503) 255-0505	
Calibrated by:	MB		*** Minimum 5 minute Runs ***	m 5 minute	Runs ***					QA/QC MEW	EW	
Dry Gas Meter			Orifice ID # 73		Orifice ID #	# 63	Orifice ID #	# 55 W	Orifice ID #	# 48 \	Orifice ID # 40	7 04
K' Critical Orifice Coefficient	ficient		0.82393		0.59635		0.46322		0.35022		0.23886	
	Symbol	Units	Run 1	Run 2	Run I	Run 2	Run 1	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	Vi	ft.	300.150	307.150	315.410	320.410	325.780	329.620	333.950	336.720	344.550	346.520
Final Volume	ΛĘ	ff.	305.950	312.520	319.430	324.430	328.930	332.920	336.330	342.490	346.180	348.570
Difference	Vm	££3	5.800	5.370	4.020	4.020	3.150	3.270	2.380	5.770	1.630	2.050
Temperatures												
Ambient		Ą.	59.5	60.5	62.3	62.1	63.4	64.1	64.3	64.5	64.5	65.1
Absolute ambient	Та	°R	519.2	520.2	522.0	521.8	523.1	523.8	524.0	524.2	524.2	524.8
Initial Inlet	Τï	Чo	70.0	74.0	73.0	73.0	71.0	70.0	70.0	69.0	67.0	0.99
Outlet	Τf	Ą.	58.0	58.0	0.09	0.09	61.0	61.0	61.0	61.0	61.0	61.0
Final Inlet	Ţį	Ŧ	74.0	76.0	73.0	73.0	70.0	70.0	0.69	0.89	0.99	67.0
Outlet	Τf	o T	58.0	0.09	0.09	60.0	61.0	61.0	61.0	61.0	61.0	61.0
Avg. Temp	Tm	%	524.7	526.7	526.2	526.2	525.4	525.2	524.9	524.4	523.4	523.4
Time		min	5	5	5	5	5	5	5	12	5	9
		sec	27	0	11	10	14	25	13	41	15	37
			5,45	5.00	5.18	5.17	5.23	5.42	5.22	12.68	5.25	6.62
Orifice man, rdg	$d\mathbf{H}@$	in H20	4.300	4.300	2.200	2.200	1.300	1.300	0.710	0.710	0.320	0.320
Barometric, Pressure	Pbar	inHg	30.40	30.40	30.40	30.40	30.40	30.40	30.40	30.40	30.40	30.40
Pump vacuum		inHg	13.0	13.0	15.0	15.0	16.0	16.0	17.0	17.0		18.0
K' factor			0.82133	0.82652	0.59544	0.59725	0.46227	0.46416	0.35052	0.34992	0.23904	0.23868
K' factor Average				0.82393		0.59635		0.46322		0.35022		0.23886
% Error (+/- 0.5)		%		0.32%		0.15%		0.20%		0.09%		0.08%
Vcr(std) Vm(std)			5.9722 5.9881	5.5084 5.5231 0.9973	4.1068 4.1178 0.9973	4.1068 4.1178 0.9973	3.2156	3.3397	2.4284 2.4349	5.8930 5.9088	1.6664	2.0957
-			2		2000	2000	0.66.0	0.000	0.88.0	0.000		0.00

Set Set	Shop #2									Horizon Engineering	Horizon Engineering	
		12/21/10								Portland, OR 97230	R 97230	-
DGM(X) =	0.99733							`		Phone (503) 255-5050) 255-5050	
	dard								_	Fax (503	(503) 255-0505	
Calibrated by:	MB	PT	*** Minimum 5 minute Runs ***	m 5 minute	Runs ***			1		QA/QC MEW	S.W.	
Dry Gas Meter			Orifice ID # 40		Orifice ID # 48		Orifice ID#	55 /	Orifice ID#	# 63	Orifice ID #73	73
K' Critical Orifice Coefficient	ficient		0.23845		0.34656		0.45566		0.57854		0.78803	
	Symbol	Units	Run 1 F	Run 2	Run 1	Run 2 H	Run 1 R	Run 2	Run 1	Run 2	Run 1	Run 2
Initial volume	Vi	ft ³	349.720	352.650	689.168	691.880	361.020	401.250	407.110	420.910	434.410	441.250
Final Volume	Λţ	ft ³	352,350	354.230	691.880	695.475	364.250	406.050	420.310	427.620	440.420	446.910
Difference	Vm	ft ³	2.630	1.580	2.712	3.595	3.230	4.800	13.200	6.710	6.010	5.660
Temperatures												
Ambient		٩	6.99	64.0	62.0	62.0	0.99	2.99	63.3	60.3	63.1	60.1
Absolute ambient	Та	°R	526.6	523.7	521.7	521.7	525.7	526.4	523.0	520.0	522.8	519.8
Y = 242 - Y	Ë	Ç,	000	0.00	0.17	0 63	000			0 00	0	0
Initial Inlet	П	-	0.00	0./0	0.70	0.70	0.60	0.17	0.17	0.0/	80.0	0.20
Outlet	Τţ	o <u>F</u>	61.0	61.0	0.09	0.09	62.0	63.0	63.0	64.0	64.0	65.0
Final Inlet	Ξ	ď.	67.0	67.0	0.89	67.0	71.0	71.0	76.0	76.0	82.0	82.0
Outlet	ΙĮ	Ą.	61.0	61.0	0.09	0.09	63.0	63.0	64.0	64.0	65.0	65.0
Avg. Temp	Tm	°R	523.4	523.7	523.4	523.2	525.9	526.7	528.2	529.7	532.4	533.2
Time		min	∞	5	9	80	5	8	. 17	∞	5	5
		sec	32	5	0	0	27	9	27	20	48	28
			8.53	5.08	00.9	8.00	5.45	8.10	17.45	8.83	5.80	5.47
Orifice man. rdg	$d\mathbf{H}(a)$	in H2O	0.310	0.310	0.680	0.680	1.300	1.300	2.100	2.100	3.900	3.900
Barometric. Pressure	Pbar	$_{ m inHg}$	30.40	30,40	30.00	30.00	30.40	30.40	30.40	30.40	30.40	30.40
Pump vacuum		$_{ m inHg}$	18.0	18.0	17.0	17.0	16.0	16.0	15.0	15.0	13.5	13.5
K' factor			0.23783	0.23907	0.34748	0.34563	0.45586	0.45546	0.57898	0.57810	0.79004	0.78602
K' factor Average				0.23845		0.34656		0.45566		0.57854		0.78803
% Error (+/- 0.5)		%		0.26%		0.27%		0.04%		0.08%		0.25%
Vcr(std) Vm(std) Y			2.6886 2.6958 0.9973	1.6144 1.6188 0.9973	2.7385 2.7458 0.9973	3.6318 3.6415 0.9973	3.2941 3.3030 0.9973	4.8884 4.9014 0.9973	13.4306 13.4666 0.9973	6.8079 6.8261 0.9973	6.0925 6.1088 0.9973	5.7296 5.7449 0.9973

13585 N.E. Whitaker Way • Portland, OR 97230 Phone (503)255-5050 • Fax (503)255-0505 www.horlzonengineering.com

Standard Meter Calibration ID # 2299046 Northwest Natural, Gas Meter Division 6/23/10

SET	NEW METER N	UMBER	ISIZE		PERF#		NEW ERT#		X READING	The second section of the second section of the second section	
CHANGE	OLD METER NL	IMBER	SIZE	(OLD PERF#	,	OLD ERT#		OLD I	NDEX READING	
REMOVAL	<u> </u>										
SERVICE	E ADDRESS		•	SPA	CE OR APT NO.				CI	ITY	
Hor	1701	tng	ine	erit	19						
METER	LEFT EQU	IP LEFT 🗸	CURB	LEFT	CUST VALV	'E	LOC.	INS.	B5.	BW.	PDL
ON	OFF ON	OFF	ON	OFF	ON OFF						1
GREEN	TAG YELLO	OW TAG	TIED	NOT	MTR	6.5 INW	C @ 130 CFH	1	2LB	OVER 2	1.8
YES	NO YES	NO		TIED	PRESSURE						
REMAR	K5 \/	NOT	ev	te	Sted	a	- 3	Flor	u Ya	+05	only
/		-, -, - <u>-</u>									7
(Meter	r ten	MD -	70,	3)							
Comple	ted By:						10722411 (2001)	Date:			
								. •	FOR METER 5	HOP ONLY 🔸	
METER	WRONG	INDEX		DR	METER	+	Telephone	MMENTS	27/08/	OPEN	(TESTS
SAMPLE 1	SIZE 2	impair 3	נט	4	IMPAIRED 6	FOR	804	809 = 996			
ERT	LEAK	CCTIADO	11.5	LIOUIDS	DEMAND	METER		ů.	99.7	GHECK	
DAMAGE 7	LEAK 8	SET WRO	ואנש	15	TEST 18	CHANGE	(00)	lo =	111	INDEXTREA	DIERTREAD
			15 18 REMOVAL			YONCY	0.0	01	$\frac{1}{209} = 99.9$		
OTHER	COPPOCION	NO LICE	200	Unautho	s/Vandalism FIRE			20 70			
OTHER 19	CORROSION 20	NO USE	PCC 24	Gas/Vano	PUL Gardellem FIRE				No plan	i la sur	
19		21		Gas/Vano	dalism FIRE	-	- 673 - 673		ALS METER	- 275	

Pitot	Mathod: #	Cp Cp	S	Location: Pitot	Whitaker Shop Date	Ср	S	Pilot	Date	Ср	S	Pitot	Date	Ср	Ś
	Tested				Tested				Tested				Tested	0.0000	0.000
3-1	9/15/2010	0.8152	0.009	3-8	9/16/2010	0.8117	0.007					4-7	9/28/2010	0.7953	0.009
3-2	9/25/2010	0.8232	0.005		9/15/2010	0.8351	0.006		11/8/2010	0.8291	0.003	4-B	9/28/2010 9/25/2010	0.8047 0.8393	0.006 0.000
3-3	9/25/2010	0.8290	0.001		9/25/2010	0.8281	0.002 0.005		1/12/2011 9/24/2010	0.8409 0.8218	0.003		8/20/2010	0.0353	0.000
3-4	9/15/2010	0.812B	0.003	3-11	9/25/2010 9/15/2010	0.8053 0.8106	0.005		9/28/2010	0.8036	0.001				
3-6 3-6				3-12	9/15/2010	0.8031	0.004		11/8/2010	0.8120	0.006		9/25/2010	0.8149	0.004
3-7	9/15/2010	0.8273	0.001		9/15/2010	0.8074	0.004					4-13	9/24/2010	0.8163	0.001
		DpP	DpS (E.Tura)	Ср	dS	Ave Cp	\$ <0.01		-	DpP P-Type)	DpS (S-Type)	Ср	dS	Ave Cp	\$ <0.01
MEW	3-1	(P-Type) 0.300	(S-Type) 0.440	0.8175	0.002	0.8152	0.009			1,450/	(0 1) 40)				,
Status	Pass	0.600	0.860		0.012	0.0102	0,000	Status							
Date	9/15/2010	0.950	1.450		0.014			Date							
Tester	pt							Tester							
.					0.000	0.0000	0.005		40	0.280	0.400	0.8283	0.001	0.8291	0.003
MEW	3-2	0.340	0.500		0.007 0.002	0.8232	0.002	Status	4-2 Pass	0.550	0.400		0.001	0.0231	0.003
Status	Pass 9/25/2010	0.590 1.050	0.850 1.500		0.002			Date	11/8/2010	0.920	1,300		0.004		
Date Tester	ph	1.030	1.000	0.0200	0.003			Tester	PT	0.002					
1 Gatta	pri .														
MEW	3-3	0.310	0.440	0.8310	0.002	0.8290	0.001		4-3	0.350	0.490		0.004	0.8409	0.003
Stalus	Pass	0.580	0.830		0.001			Status	Pass	0.675	0.930		0.003		
Date	9/25/2010	1.050	1,500	0.8283	0.001			Date	1/12/2011	1.050	1.450	0.8425	0.002		
Testor	ph							Tester	PTH						
MEW	3-4	0.340	0.500	0.8164	0.004	0.8129	0.003	MEW	4-4	0.310	0.460	0.8217	0.000	0.8218	0.001
Status	Pass	0.560	D.840		0.005	0.0 120	0.000	Status	Pass	0.670	0.970		0.001		
Date	9/15/2010	0.980	1.450		0.001			Date	9/24/2010	1.100	1.600	0.8209	0.001		
Tester	pt							Tester	ph /						
	•							l	1/	0.040	0.000	0.5005	0.003	0.000	0.000
Į.								C1-1	4-5 V	0.340	0.520		0.003	0.8036	0.002
Status								Status	Pass 9/28/2010	0.540 0.930	0.820 1.400		0.000		
Date								Date Tester	pt	0.550	1.400	0.0000	0.003		
Tester								16316	pi.						
l								l	4-6	0.330	0.480		0.009	0.8120	0.006
Status								Status	Pass	0.620	0.920		0.001		
Date								Date	11/8/2010	0.920	1,400	0.8025	0.010		
Tester								Tester	PT						
	2.7	0.000	0.430	0.8269	0.000	0.8273	0.001	Į .	4-7	0.270	0.420	0.7938	0.002	0.7953	0.009
MEW Status	3-7 Pass	0.300 0.530	0.760		0.000	0.0213	0.001	Status	Pass	0.560	0.840		0.013	2	5,252
Date	9/15/2010	0.980	1.400		0.001			Date	9/28/2010	0.940	1.500		0.012		
Tester	pt	0.500		0.0-00				Tester	PT						
	•							l						B 0047	0.000
MEW	3-8	0.310	0.450		0.010	0.8117	0.007		4-8	0.330	0.510		800.0	0.8047	0.006
Status	Post	0,530	0.790		0.001			Status	Pars	0.510 0.930	0.760 1.400		0.006 0.002		
Date	9/15/2010	0.920	1,400	0.8025	0.009			Date Tester	9/28/2010 pt	0.530	1,400	0.0005	0,002		
Tester	pt							I CE LEI	ps.						
MEW	3-9	0.320	0.440	0.8443	0.009	0.8351	0.006	MEW	4-9	0,270	0.380		0.005	0.8393	0.006
Status	Pess	0.580	0.820		0.002			Status	Pass	0.520	0.730		0.004		
Date	9/15/2010	0.980	1.400		0.007			Date	9/25/2010	1,100	1,500	0.8478	0.009		
Tester	pt							Tester	ph						
	0.40	0.000	0.400	0.0252	0.000	0.8281	0.002	I							
MEW	3-10 Bana	0.320	0.460 0.910		0.002 0.002	0.0281	0.002	Status							
Status Date	Pass 9/25/2010	0.640 1.050	1.500		0.002			Date							
Tester	9/25/2010 ph	1,000	1.500	OULUG	5.000			Tester							
. 5500															
MEW	3-11	0.300	0.460		0.005	0.8053	0.005								
Status	Pass	0.580	0.880		0.002			Status							
Date	9/25/2010	0.910	1.350	0.8128	0.007			Date							
Tester	ph							Tester							
MEW	3-12	0.320	0.470	0.8169	0.005	0.8106	ስ በስላ	MEW	4-12	0.260	0.420	0.8083	0.007	0.8149	0.004
Status	Pass	0.560	0.470		0.000	0.0100	0.000	Status	Pass	0.570	0.840		0.001		
Date	9/15/2010	0.940	1.400		0.001			Date	9/25/2010	1,100	1.600		0.005		
Tester	pt							Tester	ph						
	-							l					5.555	0.0455	0.004
MEW	3-13	0.300	0.450		0.005	0.8031	0.004	MEW	4-13	0.320	0.470		0.002	0.8153	0.001
Status	Pass	0.580	0.880		0.001			Status	Pess	0.650	0.960		0.001 0.001		
Date	9/15/2010	0.940	1.460	0.7971	0.006			Date	9/24/2010	1.150	1.700	0.8143	0.001		
Tester	pl							Tester	ph						
MEW	3-14	0.290	0.440	0.8037	0.004	0.8074	0.004	1							
Status	3-14 Pass	0.580	0.440		0.004	0.0074	V.004	Status							
	9/15/2010	0.000	1.450		0.002			Date							
Date								Tester							

Pitol	Date	Cp	S	Location: Plot	Whileker Sho Date	р Ср	8	Pdot	Dale	Ср	S	Pliot	Date Tested	Ср	5
5-1	Tested			5-11	9/14/2010	0.8270	0.004	6-1	7ested 9/25/2010	0.8144	0.005	7-5			_
5-2			- 1	5-12	9/25/201D	0.8368 0.8430	0.003	6-2	9/18/2010 9/18/2010	0.8264	0.002 0.009	7-8 7-7	9/25/2010 9/24/2010	0.8008 0.8347	0.005
5-2 5-3 5-4	9/15/2010	0.8362	0.005	5-13 5-14	9/15/2010 9/15/2010	0.B310	0.003	5-4			- 1	7-8	9/16/Z010	0.8148	0.007
5-5	9/25/2010	0.6207	0.005	5-15	9/15/2010	0.8391	0.004 0.009		9/16/2010 9/25/2010	0,7097 0.B332	0.005 0.003		9/16/2010 9/24/2010	0.8393 0.8404	0.003
5-6 5-7	9/15/2010 9/14/2010	0.6027 0.6492	0.007		9/15/2010	0.8125	0.000	7-1	9/24/2010	0.B198	0.002	7-11	11/12/2010	0.8399	0.003
5-8	9/24/2010	0 8302	0.006	5-16	9/16/2010	0.8306	0,008	7-2 7-3	0/25/2010	0.8112	0.0050	7-12 Alcoa-1	6/16/2010 10/4/10	0.8366 0.8211	0.001
5-0 5-10	9/25/2010 9/15/2010	0.8266 0.6125	0.009	3-10				7-4	9/25/2010	0,7953	0.0062	Alcoa-2	10/4/10	0.8367	0.007
		DpP (P-Туро)	DpS (S.Type)	СÞ	d3	Ave Cp	. <0.01			OpP (P-Type)	DpS (S-Type)	Cþ	dS	Ауе Ср	8 <0.01
		(P-1990)	(S-Type)				, -0.01	MEW	6-1	0.310	0.450	0.8127	0.002	0.8144	0,005
Sintus Onto Tester								Sintus Dats Tester	Pass 9/25/2010 ph	0.600 1,000	0.B70 1.500	0.6222 0.6083	0.008 0.006		
•								MEW	6-2	0.330 0.640	0.470 0.920	0.8296 0.8267	0.003 0.001	0.6264	0.002
Slatus Date								Sintus Date	Pess 9/16/2010	0.040	1.400	0.8241	0.002		
Tester								Tester	pt						
								MEW	6-3	0.330	0.500	0.8043	0,000	0.8100	0.000
Stalus Date								Status Date	Pass 9/16/2010	0.690 0.970	0.000 1.400	0.6016 0.6241	0.008 0.014		
Tester								Tester	pt						
	5-4	0.320	0.450	0,8348	0.001	0,8362	0.006								
Status Dato Tester	Pass 0/15/2010 pi	0.620 0.910	0.850 1.300	0,8455 0,8283	0.000 0.008			Status Date Tester							
	./			0.0450	0.004	0.8207	0.005	MEW	6-5	0.340	0.630	0.7029	D.007	0.7997	0.005
MEW Status Dalo Toster	5-5 Pass 9/25/2010 ph	0.320 0.640 1.050	0.470 0.949 1.500	0,8160 0,8160 0,6263	0.004 0.008	0.6207	0.003	Status Data Tester	pass 9/16/2010 pl	0.590	0.880 1.600	0.8061 0.6002	0.005	0.1027	0.55
		0.545	0.460	0.8127	0,010	0.8027	0.007	MEW	6-6	0.270	0.380	0.8345	0.001	0.8332	0.003
MEW Stalus Dale Tester	5-6 Pass 9/15/2010 pt	0.310 0,590 0,920	0.920 1.400	0.7028 0.8025	0.010	0.802)	0.007	Status Date Toster	Pass B/25/2010 ph	0.550 0.910	0.770 1.300	0.8367 0,8283	0,004 0.005		
	•		0.400	0.6486	0.001	0.8492	0.004	MEW	7-1	0.310	0 450	0.6217	0.002	0.6198	0 002
Status Data Tester	6-7 Pass 9/14/2010 pt	0.360 0.590 0.980	0.490 0.790 1.350	0,6556 0,8435	0.006 0.006	0.0462	0.004	Status Date Tester	Pass 9/24/2010 ph	0.640 1.100	D.940 1.600	0.8169 0.8209	0.003		
		0.777	0.450	0.0348	0.005	0.8303	0.006	KEW	7-2	0.290	0.440	0.8037	0.007	0.8112	0.005
MEW Slatus Data Tesler	5-8 Pass 9/24/2010 ph	0.320 0.620 1.100	0.450 0.600 1.550	0.8348 0.8217 0.8340	0,005 0,008 0,004	0.8302	0.000	Status Date Tester	Pass 9/25/2010 ph	0.610 1.050	0.900 1.550	0.8150 0.8148	0.004	2.27.12	
	6-9	0.270	0.390	0.8237	0.003	0.8266	0.005								
MEW Status Date Tester	Pass 9/25/2010 ph	0.600 1.100	0.670 1.550	0,8222 0,8340	0,004	0.14.00	0.002	Status Dato Testor							
	5-10	0.280	0.430	0.7959	0.014	0.8125	0 000	MEW	7-4	0,260	0.460	0.7861	0.009	0.7953	0.000
Slatus Date Tesler	Pass 9/15/2010 pl	0.560 0.950	0,810 1,400	0.8232 0.0155	0.011 0.003	0.11/20		Status Date Testor	Pess 9/25/2010 ph	0.620 0.990	0,960 1.500	0.7956 0.6043	0.000		
	6 ∙11	0310	0.440	0.8310	0.003	0.8279	0.004	Į							
Slatus Dato Tesler	Paso 9/14/2010 pl	0.620 0.930	0,680 1,350	0.8310 0.8217	0.003 0.008			Status Dato Tester							
WEW	5-12	0.200	0.410	0.8326	0.004	0,8368	0.003	MEW	7-6	0.280	0.430	0 7980	0.002	0 8008	0.005
Slatus Date Teslor	Pess 9/25/2010 ph	0.610 0.970	0,850 1,350	0.8387 0.8392	0.002 0.002			Status Dalo Tester	Pass 9/25/2010 ph	0.600 1.000	0,900 1.550	0.6083 0.7052	0.008 0.006		
WEW	5-13	0.310	0.440	0.8310	0,012	0.8430	0.006	MEW	7-7	0.470	0.000	0.6354	0.001	0.8347	0.004
Status Dato	Pass 9/16/2010	0.570 0.950	0.770 1.300	0.8518 0.8463	0.009			Status Dala	Pass 9/24/2010	0 670 1.050	0.030 1,500	0,8493 0,8283	0.006 0.006		
Tester	pt							Tester	ph						
MEW Status Dels	5-14 Pass 9/15/2010	0.300 0.560 0.990	0.430 0.790 1.400	0.8269 0.8335 0.8325	0.004 0.003 0.002	0.8310	0.003	MEW Status Date Tester	7-8 Pasa 9/16/2010 pl	0.300 0,580 0.990	0.440 0.840 1.600	0.8175 0.8226 0.8043	0.003 0.008 0.011	0.8148	0.007
Tester	pt							1						0.00	
MEW Status Dale	5-15 Pass 9/15/2010	0.300 0.540 0.960	0.420 0.740 1.350	0,8367 0.8457 0.8348	0.002 0.007 0.004	0.6391	0.004	MEW Status Date Tester	7-9 Pass 9/15/2010 pl	0.320 0.520 0.940	0.450 0.720 1.300	0.6348 0.6413 0.6418	0,004 0.002 0.002	0.8393	0.003
Tester	pt				_			ĺ				0.8388	0.002	0.6404	0.003
MEW Status Dalo	5-16 Pess 9/15/2010	0.280 0.660 0.950	0.430 0.810 1,400	0,7989 0,8232 0,8155	0.014 0.011 0.003	0.8125	0.000	MEW Status Date Tester	7-10 Pass 9/24/2010 ph	0.280 0.540 1,100	0.390 0.760 1.600	0.8385 0.8345 0.8478	0.002 0.008 0.007	0.5494	0.002
Tester	pl							I		A 245	0.620	0.8387	0.001	0.8399	0.003
Status Date Tester								Slatus Dalo Teslar	7-11 Pass 11/12/2010 JL	0.445 0.580 1.050	0,935 1,470	0.8367 0.8367	0.004	C.2004	5.50
	6 40	5.000	0.455	0.8367	0.006	0 8306	n nes	MEW	7-12	0.300	0.420	O B367	0.000	0.8366	0.00
MEW Slatus Date Tesler	6-18 Poss E/15/2010 pt	0.640 1.000	0.420 0.790 1.400	0.8367 0.8367	0.005 0.005	y 230d	0.000	Status Data Tester	Pess 9/16/10 pt	0.570 0.930	0.800	0.8357 0.8373	0.001	*	
	*-							1	Alcoa-1	0.318	0.454	0.8196	0.001	0.8211	0.003
Status Dale Tester								Status Date Teater	Pass 10/4/10 JL	0.540 0.610	0.760 1.310	0.8185 0.6251	0,003 0,004		,
								1		A 222	0.450	0.844B	800.0	0.8367	0.007
								Stalus Date Tester	Aicea-2 Pasa 10/4/10 JL	0.335 0.610 0.620	0,450 0,650 1,320	0.8387 0.8365	0.002 0.010	0.030/	0.00

Pilot	Method: f Date Tested	Cp Cp	s	Location: Pitot	Whiteker Sho Date Tested	Ср	5	Pilot	Date Tested	Ср	S	Pitot	Date Tested	Ср	\$
35-1	9/25/2010	0.8387	0.005	5s-4	9/15/2010	0.8378	0.009		9/25/2010	0.8289		SR-36	9/25/2010	0.8200	0.000
35-2	9/25/2010	0.8324	0.003		9/15/2010	0.8257	0.008		9/25/2010	0.8382		SR-48	9/25/2010	0.0128	0.00
19-3	9/15/2010	0.8322	0.010		9/25/2010	0.8297		10s-1	9/25/2010	0.82B0 0.8329	0.004	SR-48A	9/25/2010	0.8366	0.00
ls-4	9/25/2010	0.8240	0.005 0.008		9/15/2010 9/15/2010	0.8314 0.8376		115-1 149-1	9/15/2010 9/15/2010	0.8070	0.002				
4s-1 5s-1	9/15/2010 9/15/2010	0.8355 0.8205	0.009		9/25/2010	0.8280		145-2	9/25/2010	0.6032	0.003	1			
5s-2	9/25/2010	0.8117	0.006		9/25/2010	0.8286		HT-4	11/8/2010	0.8159	0.007	i			
55-3	9/15/2010	0.8348	0.002					SR-18	9/25/2010	D.8243	0.006				
		DpP (P-Type)	Dp\$ (S-Type)	Ср	dS	Ave Cp	\$ <0.01			Dp₽ (P-Type)	DpS (S-Type)	Ср	d5	Ave Cp	S <0.01
MEW	35-1 //	0.260	0.360	0.8413	0.003	0.8387	0.005	WEW	7s-1	0.330	0.470		0.001	0.8289	0.000
Status	Pass V	0.560	0.770	0.8443	0.006			Status	Pass	0.610	0.870		0.000 0.001		
Dale Tester	9/25/2010 ph	0.950	1.350	0.8305	0.008			Date Tester	9/25/2010 ph	1.050	1,500	0.0203	0.001		
MEW	35-2	0.340	0.480	0.833	0.001	0.8324	0.003	MEW	8s-2	0.350	0.480		0.007	0.8382	0.005
Status	Pass	0.670	0.940		0.003			Status	Pass	0.500	0.700		0.001		
Date T este r	9/25/2010 ph	1.050	1.500	0.828	0.004			Date Tester	9/25/2010 ph	0.990	1.400	0.8325	0.006		
MEW	38-3	0.300	0.410		0.015	0.8322	0.010	MEW	10s-1	0.300	0.430		0.001	0.6280	0.004
Status	Pass	0.580	0.820		0.000			Status	Pass	0.560	0.810		0.005		
Dale Tester	9/15/2010 pt	0.920	1.350	0.817	0.015			Date Tester	9/25/2010 ph	1.100	1.550	0.B34	0.006		
MEW	35-4	0.320	0.470	0.617	0.007	0.8240	0.005	MEW	115-1	0.340	0.470		0.009	0.8329	0.010
Status	Pass	0.600	0.860	0.827	0.003		-1.500	Status	Pass	0.610	0.850	0.839	0.005		
Date Tester	9/25/2010 ph	1.050	1.500	0.828	0.004			Date Tester	9/15/2010 pl	0.990	1.450	0.818	0.015		
MEW	4s-1	0.300	0.410	0.8468	0.011	0.8355	G DOS	MEW	14s-1	0.300	0.450	0.808	0.001	0.8070	0.002
MEVV Status	45-1 Pass	D.570	0.800	0.8357	0.000	0.0000	0.000	Status	Pass	0.560	0.840		0.001	0,00.0	
Date Tester	9/15/2010 pt	0.970	1.400	0.8241	0.011			Date Tester	9/15/2010 pt	0.990	1.500	0.804	0.003		
MEW	5s-1	0.360	0.530	0.8159	0.005	0.8205	0.009	MEW	145-2	0.320	0.480		0.005	0.8032	0.003
Status	Pass	0.540	0.760	0.8345	0.014			Status	Pass	0.640	0.980		0.003		
Date Tester	9/15/2010 pt	0.940	1.400	0.8112	0.009			Date Tester	9/25/2010 ph	0.950	1,450	0.801	0.002		
MEW	5s-2	0.290	0.440	0.8037	800.0	0.8117	0.006	J	HT-4	0.265	0.400		0.010	0.8159	0.007
Status	Pass	0.630	0.940		0.001			Status	Pass	0.550	0.810		0.000		
Date Tester	9/25/2010 ph	1.100	1.600	0.8209	0.009			Date Tester	11/8/2010 pt	0.940	1.350	0.826	0.010		
MEW	5s-3	0.290	0.410	0.8326	0.002	0.8348	0.002	MEW	SR-18	0.320	0.460		0.001	0.8243	0.006
Status	Pass	0.540	0.760	0.8345	0.000			Status	Pass	0.600	0.850		0.007		
Date Tester	9/15/2010 pt	0.930	1.300	0.8373	0.003			Date Tester	9/25/2010 ph	0.950	1,400	0.616	0.009		
MEW	5s-4	0.310	0.440	0.8310	0.007	0.8378	0.009	MEW	SR-36	0.330	0.490		0.008	0.8200	0.006
Status	Pass	0.600	0.850	0.8318	0.006			Status	Pass	0.630	0.920		0.001		
Date Tester	9/16/2010 pt	0.960	1.300	0.8507	0.013			Date Tester	9/25/2010 ph	1.050	1.500	0.828	800.0		
MEW	65-1	0.310	0.440	0.6310	0.005	0.8257	0.008	MEW	\$R-48	0.310	0.470		0.009	0,8128	0.006
Status	Pass	0.560	0.830	0.8132	0.012			Status	Pass	0.610	0.890		0.007		
Date Tester	9/16/2010 pt	0.920	1.300	0.8328	0.007			Date Tester	9/25/2010 ph	1.050	1.550	0.815	0.002		
MEW	6s-2	0.320	0.460	0.8257	0.004	0.8297	0.004	MEW	SR-48A	0,280	0.400	0.828	0.008	0.8366	0.007
Status	Pass	0.690	0.970	0.8350	0.005	2.3201	0.004	Status	Pass	0.610	0.860	0.834	0.003		
Date Tester	9/25/2010 ph	1.050	1,500	0.8283	0.001			Date Tester	9/25/2010 ph	1.100	1.500	0.840	0.011		
MEW	6s-3	0.310	0.450	0.8217	0.010	0.8314	0.006								
Status	Pass	0.580	0.810	0.8377	0.006			Status							
Date Tester	9/15/2010 pt	0.960	1,350	0.8348	0.003			Date Tester							
MEW	65-4	0.340	0.480	0.8332	0.004	0.8376	0.003	J							
Status	Pass	0.550	0.760		0.005			Status							
Date Tester	9/15/2010 pt	0.930	1,300	0.8373	0.000			Date Tester							
MEW	65-5	0.340	0.490	0.8247	0.003	0.8280	0.002								
Status	Pass	0.620	0.880	0.6310	0.003			I							
Date Tester	9/25/2010 ph	1.050	1.500	0.8283	0.000										
MEW	6s-6	0.320	0.460	0.8257	0.003	0.8286	0.002								
Stetus	Pass	0.600	0.650		0.003										
Date	9/25/2010	1.050	1.500		0.000										
Tester	ph							ı							

Month:	-lan	Testare:	Antiens	Locations	Haston Libou	220 +/-			450 +/-	
Indicator	Charmel	Standard, F	Managed, F	Difference %	Standard, F	Heasured F	Difference %	Standard, F	Measured, F	Difference %
Meter Dox 1 6-Jan-11	Stack: Probe	50 50	40	0,78%	200 200	197 198	0.46% 9.61%	490	395	0.68%
Co/O:-HEW	Cych	60 80	47 47	0.59% 0.60%	200	197 168	0.45%	400 400	398	0.47%
	Augu	50	46	0.76%	200	197 197	0.45% 0.45%	400 400	226 397	0.47%
	Meter In	(2) (2)	47 47	0.50% 0.50%	500 500	198	0.30%	400	208	0.23%
Meter Dex 2 10-Jan-11	Štack Probe	60	48 47	0.50% 0.30%	200 200	199	D.16%.	400 400	\$67 500	0.35% 0.12%
QMQ0-KEW	Oven	60	48	0.39%	200 200	190 190	0.30%	400 400	307	0.35%
	karpinger Aus	60 50	46 45	0.39%	200	100	0.15%	430	393	0.23%
	Maler In Motor Out	50 60	60 49	0.00% 0.20%	200 200	201 200	-0.15% 0,00%	400 400	400	0.00%
Lister Box 3	Stack	60	40	0.39%	200	100	0.16% 0.30%	400 400	396 396	0.23%
10-Jan-11 Da/O:-WEW	Probe	60 60	43 47	0.30% 0.60%	200	197	0.45%	400	397	0.35%
	krapinger Aus	50 50	49	0.20%	200	190	0.16% 0.16%	400 400	401 399	0.12%
	Noter In	50 60	4D 40	0.20%	200 200	200	0.00%	420 400	400 400	0,00% 200.0
Meter Errx 4	Relar Dut Black	75	77	0.20% -0.37%	200	200	-0.30%	400	402	-0.23%
18-Jan-11 Qu/Qo-MEW	Probe Oven	75 76	78 78	-0.50% -0.50%	200 200	204 203	-0.61% -0.45%	400 400	403 402	-0.35% -0.23%
Qui Coma II	Interproper	75	76	-0.10% -0.37%	200	202 201	-0.30% -0.15%	400 400	402 402	-0.23% -0.23%
	Meter Out	75 76	77	-0.37%	200	202	·0.30%	400	401	-0.12%
Merer Bax 5 3-Jan-11	Stack Probe	60 50	46 47	0.39% 0.50%	250 250	248 247	0.26% 0.42%	400 400	397	0.23%
CHOCHEW	Own	£3 60	4B	0.30% 0.30%	250 210	245 247	0.28%	400 400	397	0.35%
	Atta	50	48	0.33%	250	248	0.28%	400 400	306 398	0.23% 0.73%
	Meler In Meler Dut	60 60	40 45	0.20% 0.39%	250 250	249 247	0.14% 0.42%	400	200	0.12%
Meter Elex 0 3-Jan-11	Stack Probe	50 50	48 60	0.30%	200 200	198	0.15%	400 400	396 328	0.22%
O NO MEW	DWM	. 60	49	0.20%	200	120	0.15%	400 400	390	0.12%
	Mapinger Maler In	50 50	48 60	0.00%	200 200	198 201	-0.16%	400	401	-0.12% -0.12%
Mater Box 7	Meter Dut Stack	EO EQ	- to	0.00%	200	201	-0.18% D.00%	400	401 400	0.00%
3-Jan-11	Probe	E0	60 52	0.00%	200 200	200 201	0.00%	400 405	400 401	0.00% -0.12%
O#GO-HEW	Impliger	50	60	0.00%	200	200	2.00%	400	400	0.00%
	Aux Meter In	60 60	61 62	-0.20% -0.39%	200 200	200 200	0.00% -0.46%	400 400	309 403	0.12% -0.35%
Malar Black O	Maker Out	50 60	62	-0.36% 6.20%	200	202 190	-0.30% 0.16%	400	402 090	-0.23% 0.12%
3-Jan-11	Probe	60	E2	-0.32%	200	201	-0.16%	400 400	401	-0.12%
CH/CO-NEW	Oven	60 50	51 40	-0.20% 9.20%	200 200	200 200	-0.16% 0.00%	400	400 309	0.00%
	Aux Mater In	60 60	4D 51	0.20%	200	120 201	0.16% -0.16%	400 400	300 402	0.12% -0.23%
	Melar Out	to	61	-0.20%	200	201	-0.18%	400	402	0.23%
Heler Box D 3-Jan-11	Stack Probe	60 50	45 48	0.30%	200	190	0.16% 0.16%	400	307	0.26%
DMO:-NEW	Cherco Impleger	(S)	45 45	0.32% 0.32%	200 200	100 100	0.15% 0.15%	400 400	597 300	0.35% 0.47%
	Aust	60	48	0.00%	200 200	199	0.15% -0.18%	400 400	396 400	0.47%
	Motor Out	8 8	60 60	0.00%	200	201	-0.15%	400	400	0.00%
Motor Dax 10 G-Jan-11	8 tack Probe	60 \$0	60	0.00%	200	200	0.00%	400 400	200	0.23% 0.12%
On/Co-MEW	Oven	60	to 49	0.00% 0.20%	200 200	200	0.00% 0.00%	400 400	327 326	0.23%
	Turbputher.	to	40	0.20%	200	200	0.00%	400	397	0.35%
	Meter in	50 60	45 48	0.39%	200 200	199	0.16% 0.16%	400 400	396	0.47% 0.47%
Meler Disc 11 \$5-Jan-11	B tack Probe	60 50	47 45	0.50%	200 200	190 190	0.16% 0.16%	400 400	398 398	%C2.0
DavQs-MEW	Oven	\$0	47	0.82%	200	120	0.30%	400	397	0.23%
l	Impinger Aza	60 60	47 48	0.50% 0.30%	200 200	190 190	0.15% 0.15%	400	398	0.23%
	Meter In	\$23 60	48	0.39%	200 200	100	0,16% 0.18%	400 400	208	0.23%
Meter Bax 13	Black		45	0.50% 0.30% 0.30%	200	100	0,16% 0,16%	400 400	394 398	0.23% 0.23%
17-Jan-11 Qa/Do-NEW	Probe	60 60	40	0.00%	200	200	0.00%	490	398	0.23%
	haploger Aus	60 50	60 49	0.00%	200 200	200 200	0.00%	400 400	400 400	0.00%
	Meter In	60 60	63 62	-0.50%	200 200	293 203	-0.48% -0.42%	400 400	400 400	-0.35% -0.35%
Lieter Box 14	6 teck	50	45	0.30%	200	1.00	0.16%	400	527	0.35% 0.12%
\$-tan-11 Qw/Qc-MEW	Probe	60 60	43 40	0.20%	200 200	200 197	0.00% 0.48%	400 400	390 365	0.50%
	trapinger	50 60	47 48	0.60%	200 200	195 199	0.76% 0.16%	400 400	206 308	0.47%
	Meler In	60	60	0.00%	200	201 201	-0.16% -0.16%	400 400	400 400	0.00%
Liter Medier 16	Mater Dut Probe	50 60		0.00% 9.81%	200	2317	30,32%	400	400	40.63 %
	Filter Aux 1	50 50		8.81% 9.61%	200 200		30,32% 30,32%	400 400		48.53% 48.53%
	Aux 2	60		0.81% 0.81%	200		20.32%	400 400		40.53% 40.63% 40.63%
	Meter Out	60 60		9,6176	200		50.32% 30.32%	400		40.53% -0.12%
Liter Meter 18 15-Feb-11	Prote	50 60	64	-0.71% 0.75%	200 200	202 107	-0.50% 0.45%	400 400	401 307	0.35%
ONDOMEW	Aux 1	50 80	62 81	-0.20% -0.20%	200 200	202 202	-0.30% -0.30%	490 400	402 402	-0.23% -0.23%
	Meter In	£ΰ	60	0.00%	200	201	-0.15%	400 400	401 402	-0.12%
Liter Melar 17	Meter Out	50	61 43	-0.20% 0.30%	200	202 196	-0.30% 0.30%	400	397	-0.22% 0.35%
11-Feb-11 Ga/Oc-HEW	Fitter Aux 1	50 E0	48 61	0.39% -0.29%	200 200	100 202	0.16% -0.30%	400	396 402	0.23%
US CLAREN	Aur 2	50	51	-0.20%	200	202	-0.30%	400 400	401 401	-0.12% -0.12%
	Motor In.	60 60	80 49	0.00% 0.20%	200 200	201 200	-0.15% 0.00%	400	400	0.00%
Liter Meter 18 11-Feb-11	Probe	50 60	45 43	0.98% 0.20%	200 200	184 187	1.62%	400 400	361 383	2.21% 1.00%
OWOP-HEM Mar-	Aux 1	60	61	-0.20%	200 200	200	0.00% -0.45%	400 400	307 402	0.35%
	Aux 2 Meler in	50 50	62 62	-0.32% -0.32%	200	203 203	-0.45%	400	405	-0.68%
Lietar Bax 19	Lister Dut Stack	EO Eò	61 45	-0.20% 0.20%	200	194	9.50%	460	40t	0.12%
10-Jan-11	Probe	I 50	47 47	0.59% V63.0	200 200	197 198	0.45%	400 400	395 307	0.35%
May-open	Oven Employer	50	48	0.32%	200	100	0.15%	400	307	0.35%
	Aux Heler In	50 60	47 60	0.00%	200 200	199 201	0.15% -0.15%	400 400	596 401	0.23%
Maker Dox 20	Mater Out	50 60	- EO	D.00% 0.59%	200	201 199	-0.15% 0.16%	400	400	0.00%
	Probe	60	45	0.30%	200	190	0.16%	400 400	320	0.23%
3-√an-11	Dven	€0 £0	48 47	0.33% 0.62%	200 200	199 197	0.15% 0.46%	400	397	ZZE.0
	Filter				200	198	0.30%	400	397	0.35%
3-√an-11	Filter	60	45	0.39%			0.35%	400	397	0.35%
3-Jan-11 Qe/Go-HEW	Filter Ext Aux Uolor	83 83	47 60	0.50% 0.00%	\$00 \$00	190 201	0.15% -0.16%	400 400	397 400	0.00%
3-Jan-11 Qa/Qo-AÆW Uster βα: 21	Est Est Aux	69 63	47	0.50% 0,00% -0.20% 0.00%	200 200 200 200	190 201 201 200	0.15% -0.16% -0.16% 0.00%	400 400 400 400	397 400 401 400	0.00% 0.00% -0.12% 0.00%
3-Jan-11 Qe/Go-HEW	Filter Ext Attr Meter Stack Probe Oven	63 63 63 63 64 60	47 60 60	0.50% 0.00% -0.20% 0.00%	200 200 200 200	190 201 201 200 201	0.15% -0.16% -0.16% 0.00% -0.16%	400 400 400 400 400	400 400 400 400 401	0.00% -0.12%
3-Jan-11 Qa/Qo-AEW Usiar Box 21 11-Jan-11	Füter Ext: Aux: Neter Stack Probe	60 60 60 60	47 60 61 60	0.50% 0,00% -0.20% 0.00%	200 200 200 200	190 201 201 200	0.15% -0.16% -0.16% 0.00%	400 400 400 400	397 400 401 400	0.00% -0.12% 0.00% -0.12%

Thermocouple Calibrations

		Testers:			Location:	Horizon Shop		
		Ambient			Heated			
Meterbox	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference %	Amb.	Heated
1 In	55.0	55.0	0.00%	236.0	233.0	0.43%	pass	pass
1/6/11 Out	55.0	53.0	0.39%	251.0	249.0	0.28%	pass	pass
2 ln	55.0	56.0	-0.19%	267.0	263.0	0.55%	pass	pass
1/10/11 Out	55.0	55.0	0.00%	248.0	251.0	-0.42%	pass	pass
3 In	55.0	55.0	0.00%	253.0	248.0	0.70%	pass	pass
1/10/11 Out	55.0	55.0	0.00%	241.0	245.0	-0.57%	pass	pass
4 !n	64.0	64.0	0.00%	137.0	137.0	0.00%	pass	pass
1/14/11 Out	64.0	63.0	0.19%	149.0	149.0	0.00%	pass	pass
5 In	59.0	60.0	-0.19%	215.0	213.0	0.30%	pass	pass
1/3/11 Out	59.0	60.0	-0.19%	206.0	207.0	-0.15%	pass	pass
6 In	59.0	60.0	-0.19%	263.0	262.0	0.14%	pass	pass
1/3/11 Out	60.0	62.0	-0.38%	272.0	272.0	0.00%	pass	pass
7 In	59.0	60.0	-0.19%	246.0	247.0	-0.14%	pass	pass
1/3/11 Out	59.0	60.0	-0.19%	244.0	243.0	0.14%	pass	pass
8 in	59.0	60.0	-0.19%	143.0	141.0	0.33%	pass	pass
1/3/11 Out	59.0	60.0	-0.19%	144.0	144.0	0.00%	pass	pass
9 In	58.0	58.0	0.00%	229.0	230.0	-0.15%	pass	pass
1/3/11 Out	58.0	59.0	-0.19%	250.0	251.0	-0.14%	pass	pass
10 in	59.0	59.0	0.00%	367.0	370.0	-0.36%	pass	pass
1/6/11 Out	59.0	59.0	0.00%	367.0	358.0	1.09%	pass	pass
11 In	61.0	62.0	-0.19%	127.0	129.0	-0.34%	pass	pass
1/14/11 Out	61.0	62.0	-0.19%	116.0	115.0	0.17%	pass	pass
12 in	ł		0.00%			0.00%	pass	pass.
date Out	J		0.00%			0.00%	pass	pass
13 In	60.0	61.0	-0.19%	290.0	293.0	-0.40%	pass	pass
1/17/11 Out	60.0	61.0	-0.19%	290.0	289.0	0.13%	pass	pass
14 In	55.0	57.0	-0.39%	253.0	256.0	-0.42%	pass	pass
1/6/11 Out	55.0	54.0	0.19%	246.0	249.0	-0.43%	pass	pass
19 In	57.0	58.0	-0.19%	269.0	271.0	-0.27%	pass	pass
1/10/11 Out	57.0	57.0	0.00%	241.0	239.0	0.29%	pass	pass
20 ln	5.0	NA		NA	NA			
1/3/11 Out	59.0	59.0	0.00%	251.0	248.0	0.42%	pass	pass
21 In	NA NA	NA		NA	NA			
11/11/1 Out	59.0	59.0	0.00%	254.0	252.0	0.28%	pass	pass
		Ambient			Heated	D/ff 0/	A b	1144
_iter Meter	Standard, F	Measured, F		Standard, F	Measured, F		Amb.	Heated
15 in			0.00%			0.00%	pass	pass
date Out	ł		0.00%			0.00%	pass	pass
16 In	58.0	60.0	-0.39%	267.0	268.0	-0.14%	pass	pass
2/2/11 Out	58.0	59.0	-0.19%	263.0	263.0	0.00%	pass	pass
17 in	58.0	59.0	-0.19%	205.0	205.0	0.00%	pass	pass
2/2/11 Out	58.0	59.0	-0.19%	229.0	230.0	-0.15%	pass	pass
18 In	58.0	59.0	-0.19%	230.0	229.0	0.14%	pass	pass
2/2/11 Out	58.0	59.0	-0.19%	231.0	232.0	-0.14%	pass	pass

Thermocouple Calibrations

			Personnel:	JL	Location:	Horizon Shop				
			Ambient			Heated			Ice	
	Date	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference %	Standard, F	Measured, F	Difference 9
Sample Box - imploger out										
t-01	9/18/2010	71.1	71.6	-0.09%	×	x		39.6	41.2	-0.32%
1-02	9/18/2010	71.3	71.8	-0.09%	×	x		43.4	44.6	-0.24%
1-03	9/18/2010	71.3	70.7	0.11%	x	×		36.5	37.4	-0.18%
1-04	9/18/2010	70.1	70.5	-0.08%	x	x		35.6	34.9	0.14%
1-05	9/18/2010	69.9	68.5	0.28%	×	x		45.3	45.3	0.00%
1-06	11/12/2010	60.0	69.0	0.19%	×	×		35.0	33.0	0.40%
1-07	9/18/2010	74.8	73.9	0.17%	×	×		48.6	49.3	-0.14%
1-08	11/12/2010	58.0	59.0	-0.19%	×	×		35.0	35.0	0.00%
1-09	9/18/2010	71.0	70.5	0.09%	x	×		38.3	36.9	0.28%
i-10	9/18/2010	70.9	71.4	-0.09%	×	×		44.9	43.7	0.24%
1-11	9/18/2010	71.0	71.1	-0.02%	×	x		39.8	37.5	0.46%
I-12		69.8	69.6	0.04%	×	x		48.2	46.7	0.30%
1-13.		70.3	70.5	-0.04%	x	×		39.6	37.9	0.34%
i-14	11/12/2010	67.0	58.0	-0.19%	x	x		34.0	34.0	0.00%
1-15	9/18/2010	71.2	71.9	-0.13%	×	×		41.1	39.6	0.30%
	11/12/2010	57.0	58.0	-0.19%	x	×		34.0	34.0	0.00%
1-17	9/18/2010	71.1	70.9	0.04%_	x	x		43.5	45.1	-0.32%
Sample Box - oven										
017	9/18/2010	70.9	70.1	0.15%	262.3	259.7	0.36%	x	×	
018	9/18/2010	71.0	70.4	0.11%	253.7	250.4	0.46%	×	x	
019	9/18/2010	71.3	70.7	0.11%	238.9	24D.4	-0.21%	×	×	
020	9/18/2010	69.8	69.3	0.09%	219.8	221.3	-0.22%	×	×	
156	9/18/2010	70.4	69.7	0.13%	223.6	219.8	0.56%	х	×	
172	9/18/2010	75.1	76.1	-0.19%	214.9	214.3	0.09%	х	×	
173	11/12/2010	60.0	59.0	0.19%	245.0	244.0	0.14%	×	×	
184		71.2	70.1	0.21%	203.8	202.5	0.20%	x	×	
	11/12/2010	60.0	59.0	0.19%	205.0	205.0	0.00%	×	x	
186		70.9	70.2	0.13%	215.2	213.9	0.19%	×	x	
187		71.1	70.6	0.11%	208.6	209.9	-0.19%	x	×	
188	9/18/2010	70.9	70.1	0.15%	263.7	261.4	0.32%	x	×	
189		70.7	71.3	-0.11%	214.1	215.3	-0.18%	x	×	
190		70.3	69.5	0.15%	257,6	252.5	0.71%	×	×	
229				0.00%			0.00%	×	×	
	11/12/2010	60.0	59.0	0.19%	241.0	250.0	-1.28%	×	×	
327	9/18/2010	71.1	70.3	0.15%	205.9	207.3	-0.21%	x	×	
328		60.0	60.0	0.00%	246.0	243.0	0.43%	×	×	
329		69.9	69.1	0.15%	233.5	236.1	-0.38%	×	×	
331		71.3	70.2	0.21%	253.4	256.9	-0.49%	×	×	

TELEPHONE 254-6524 (ARCA GOOD SUD

4233 N. E. 147TH AVENUE & P. O. BOX 20116

PORTLAND, DREGON 9722

CERTIFICATE

) P 4	
FOR	A STATE OF THE STA		
Altek Calibrat	or		<u> </u>
Series 22	o A Company		<i>\$</i> 3
Serial# 10663	701 PAIMLEY 1740 (DIGIL DS LABORATORY	marks and
*Engrava	[]	the state of the s	
Submitted B	y [:-		<u> </u>
Horizon Engine	ering:	ล้	F. 1.
13585 NE Whitt	aker wey	Segment .	
Portland, OR	97230	101	
	JIA	E graphy and	
Test Erro 0°F +.4 50°F +.4 100°F +.4 150°F +.5 250°F +.7	r Test 300°F 350°F 400°F 450°F 500°F	+.6 +.6 +.7 +.6 +.1	Certified By: Gordon Model 5050 Serial# 10270 Resubmssion Date: 10-30-10

The accuracy stated on this certificate is traceable to the NATIONAL ***ITUTE* OF STANDARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Cond	ditions	Authorized Signatures
AMBIENT TEMP. :	68°	PERFORMED BY: R6
REL. HUMIDITY:	56%	FERFORMED BI.
DATE:	7-1-10	
REPORT NO.:	10G-2	APPROVED BY: Bob Edgel
SERVICE ORDER:	20756	APPROVED BY: 1000 cogo
P.O. NUMBER:		RESUBMISSION DATE: 7-1-11

MFG. RED COMET OVENS

TELEPHONE 254-6524 (AREA CODE SOD)

JUNIONA HTT AL . IN EEC A

F. D. BOX 20116

PORTLAND, DREGON 97221

CERTIFICATE

FOR	d E	and a	
Altek Calibrator)
Series 22			A
Serial# 10400304		S LABORATORY	ip (Ba _{raya)}
Marine Marine	The state of the s	was a second the pro-	
Submitted By	Z.	e de la companya de la constitución de la constituc	
Horizon Engineeri	119 11		: *************************************
13585 NE Whittake	ı. Hey	E Think	· · · · · · · · · · · · · · · · · · ·
Portland, OR 97	230 🗻	Canada Separation	
Test Error 0°F -1.0 50°F -1.0 100°F -1.0 150°F9 200°F9	Test 3000F 350°F 400°F 450°F 500°F	Error -1.0 -1.0 -1.0 -1.1 -1.5	Certified By: Gordon Model 5050 Serial# 10270 Resubmission Date 10-30-10

The accuracy stated on this certificate is traceable to the NATIONAL WITTENESS OF STANDS ARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Cond	ditions	Authorized Signatures
AMBIENT TEMP. :	68°	PERFORMED BY: R6
REL. HUMIDITY:	<u>5</u> 6%	PERFORMED BI:
DATE:	7-1-10	
REPORT NO.:	10G-3	APPROVED BY: Bob Edgel
SERVICE ORDER:	20756	APPROVED BY: NOT COME
P.O. NUMBER:		RESUBMISSION DATE: 7-1-11

4233 N. E. 147TH AVENUE

MFG. RED COMET OVENS

TELEPHONE 254-6524 (ARCA CODE 500)

PORTLAND, DREGON 97221

CERTIFICATE

,	
FOR	
Type K Thermocouple	<u> </u>
1/4" x 36" w/glug	Company of the Compan
Serial# 200701, 20	GRANT EDGEL
WATER!	No.
Submitted By	DATE
Horizon Engineerin	000
13585 NE Whittaker	WHY Q-
Portland, OR 97230	
T/C # 32°F 200701 +.8 200901 +.4	212°F -1.4 -1.1
201001 +.8	-1.3
	on Model 5050 Serial# 10270 bmission Date: 103010

The accuracy stated on this certificate is traceable to the NATIONAL BUREAU OF STAND-ARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Con	ditions	Authorized Signatures
AMBIENT TEMP. :	75°F	TOTAL PARK 10/
REL. HUMIDITY:	598	PERFORMED BY:
DATE:	6-23-10	
REPORT NO.:	10F-1	RICL I
SERVICE ORDER:	20748	APPROVED BY: Bob Edgel
P.O. NUMBER:		RESUBMISSION DATE: 6-23-11
		I

TELEPHONE 254-6524 (AREA DOCC SOD)

4233 N. E. 147TH AVENUE

P.O. 80X 20116

PORTLAND, OREGON 97220

CERTIFICATE

	,		A L	
FOR	Special Control of the Control of th	r	7 /	
Type K Therm	ocouple			
1/4" x 36"w/	plija serij	# 2007n2.	200 902 7	
1/8" x 3"w/p	Edward Control of the	200602		
	Appendix and a second	क के महाराज्यात कर कर कर के प्रतास के उस के प्रतास के का कि प्रतास के किए की कि	object to the second se	
Submitted	B y	former mississippine , takens propose person of the selection of the selec		
Horizon Engi	neering		Separate .	
13585 NE Whi	ttaker Way		Andrew .	
Portland, OR	97230		07	
<u>T/C #</u> 200602 200702 200902	+.5 +1.5 +1.7	212°F -1.9 -1.6 -2.2	7// 40000	
Certified By	: Gordon Mod Resubmissi		Serial# 10270 10-30-10	

The accuracy stated on this certificate is traceable to the NATIONAL WETTTUTE OF STAND-ARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Con	ditions	Authorized Signatures
AMBIENT TEMP. :	68°F	PERFORMED BY: R6
REL. HUMIDITY:	56%	PERFORMED BI:
DATE:	7-1-10	
REPORT NO.:	10G-1	APPROVED BY: Bob Edgel
SERVICE ORDER:	20756	APPROVED BY: 1000 COSC G
P.O. NUMBER:		RESUBMISSION DATE: 7-1-11
		1

ABO # 1, 0 \$ 4

4233 N. E. 147TH AVENUE

P. D. BOX 20116

PORTLAND, DREGON 97220

CERTIFICATE

	î.		
FOR	· · · · · · · · · · · · · · · · · · ·		<i>}</i> -
Fluke Dig	rital		and the same of th
Model 52	TO A		750
Serial#	607521 nym	CRANT 405 L STANDARDS LABORATORY	74 Chang
Submitte	d By		£ 11 ¹⁰ 3
Horizon E	ngineering	The state of the s	
13585 NE	Whittaker Way		Q
Portland,	OR 97230		>
	~~. 	MAN	
Test	Error T1	Error T2	Certified By: Gordon Model5050
100°F	-0.2	+0.4	Serial# 10270
300°F	+0.6	+1.4	Resubmission Date
500°F	+0.0	+0.6	10/30/10
800°F	-0.3	+0.4	
1000°F	+0.2	+0.8	PROCESS AND THE PROGRAMMENT AND THE PARTY AN
The accura	cy stated on this certific	are is traceable to the NA	TIONAL WETHER OF STAND-

The accuracy stated on this certificate is traceable to the NATIONAL WITHTE OF STANDARDS through certification documents on file in the Metrology Laboratory of the Grant Edgel Company.

Test Conditions		Authorized Signatures	
AMBIENT TEMP. :	65°F		
REL. HUMIDITY:	45%	PERFORMED BY:	
DATE:	3/19/10		
REPORT NO.:	10C-1	APPROVED BY: Bob Edgel	
SERVICE ORDER:	20701		
P.O. NUMBER:		RESUBMISSION DATE: 3/19/11	

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

January 12, 2010 Horizon Engineering Shop Barometer Calibration

National Weather Service (PDX Int'l Airport)	29.82"Hg
TV 1	30.0"Hg
TV.2	29.8"Hg
TV3 V	29.8"Hg
TV 4	30.0"Hg
Shop	30.1"Hg
Shortridge #1	30.1"Hg
Shortridge #2	30.0"Hg
Shortridge #3	29.8"Hg
Paul Heffernan's personal wrist barometer	29.8"Hg

All pressures are absolute, read at the Horizon Engineering shop. Margery P. Heffernan

Industry Leader in Specialty Gases, Equipment and Service Certificate of Analysis

- EPA PROTOCOL GAS -

CC-251832 R-M420

Customer

Am Test - Air Quality (Preston, WA)

Date

July 29, 2009

Delivery Receipt

DR-25475

Gas Standard

945.0 ppm CO, 22.00% CO2, 22.00% Oxygen/Nitrogen

Final Analysis Date **Expiration Date**

July 29, 2009 July 29, 2012

Component

Carbon Monoxide, Carbon Dioxide, Oxygen

Balance Gas

Nitrogen

Analytical Data:

DO NOT USE BELOW 150 psig

PA Protocol, Section No. 2.2, Procedure G-1

Reported Concentrations

Carbon Monoxide: 981.1 ppm +/- 9.8 ppm

Carbon Dioxide: 21.23% +/- 0.21%

Oxygen: 22.22% +/- 0.22% Nitrogen: Balance

Reference Standards:

SRM/GMIS:

GMIS

GWAS/GMIS

GMIS

Cylinder Number:

CC-251970

CC-115915/CC-158974 1003.2 ppm CO 19.4% CO2/39.86% CO2 CC-85458 20.97% Oxygen

Concentration: **Expiration Date:**

11/12/10

01/21/11 - 03/17/10

04/15/11

Certification Instrumentation

Component:

Carbon Monoxide

Carbon Dioxide

Oxygen

Make/Model:

Nicolet - Nexus 470 AEP99000154

HP5890II

Servomex 244a

Serial Number:

3336A59393

1847 Paramagnetic

Principal of Measurement: Last Calibration:

FTIR July 02, 2009

TCD July 07, 2009

July 01, 2009

Cylinder Data

Cylinder Serial Number:

CC-251832

Cylinder Outlet:

CGA 590

Cylinder Volume:

140 Cubic Feet

Cylinder Pressure:

2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Mike Duncan

Industry Leader in Specialty Gases, Equipment and Service

Certificate of Analysis

- EPA PROTOCOL GAS

EB:0017860 R Mix 26-AmT

Customer

Am Test - Air Quality (Preston, WA)

Date

October 22, 2009

Delivery Receipt

DR-26472

Gas Standard

440.0 - 495.0 ppm CO, 12.00% CO2, 12.00% Oxygen/Nitrogen

Final Analysis Date Expiration Date

October 22, 2009 October 22, 2012

Component

Carbon Monoxide, Carbon Dioxide, Oxygen

Balance Gas

Nitrogen

Analytical Data:

DO NOT USE BELOW 150 psig

PA Protocol, Section No. 2.2, Procedure G-1

Reported Concentrations

Carbon Monoxide: 480.8 ppm +/- 4.8 ppm

Carbon Dioxide: 12.05% +/- 0.12%

Oxygen: 12.02% +/- 0.12% Nitrogen: Balance

Reference Standards:

SRM/GMIS:

GMIS

GMIS/GMIS

GMIS/GMIS

Cylinder Number: Concentration:

CC-166528 496.3 ppm CO CC-159114/CC-125534

CC-166423/CC-85458 7.20% CO2/13.31% CO2 10.10% O2/20.97% Oxygen

Expiration Date:

04/06/11

08/26/10 - 01/28/11

03/04/11 - 04/15/11

Certification Instrumentation

Component:

Carbon Monoxide

Carbon Dioxide

Oxygen

Make/Model:

Nicolet - Nexus 470

Agilent 7890A

Servomex 244a

Serial Number:

AEP99000154

CN10736166 GC-TCD

1847 Paramagnetic

Principal of Measurement: Last Calibration:

FTIR October 06, 2009

September 23, 2009

October 22, 2009

Cylinder Data

Cylinder Serial Number:

EB-0017560

Cylinder Outlet:

CGA 590

Cylinder Volume:

140 Cubic Feet

Cylinder Pressure:

2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Mike Duncan

Mile Dincon

Unmatched Excellence

Industry Leader in Specialty Gases, Equipment and Service Certificate of Analysis

- EPA PROTOCOL GAS -

R-Mil 28-AmT

Customer

Am Test - Air Quality (Preston, WA)

Date

October 01, 2009

Delivery Receipt

DR-26337

Gas Standard

900-995 ppm NO, 900-995 ppm SO2, 900-995 ppm CO/N2-EPA PROTOCOL

Final Analysis Date

September 30, 2009

Expiration Date

September 30, 2011

DO NOT USE BELOW 150 psig

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

Reported Concentrations:

Nitric Oxide: 967.8 ppm +/- 9.6 ppm

Sulfur Dioxide: 936.1 ppm +/- 9.3 ppm

Carbon Monoxide: 979.8 ppm +/- 9.7 ppm

Nitrogen: Balance Total NOx: 968.0 ppm

** NOx for Reference Use Only **

Reference Standards

SRM/GMIS/NTRM:

GMIS

GMIS/GMIS

GMTS/GMTS

Cylinder Number:

CC-100805

CC-115955/CC-159050 758.3/1472.7 ppm SO2/N2 CC-251967/CC-251970 769.5 ppm CO/1003.2 ppm CO

Concentration: **Expiration Date:** 803.2 ppm NO 11/12/10

05/05/11 - 06/27/10

11/10/10 - 11/12/10

Certification Instrumentation

Component:

Nitric Oxide

Sulfur Dioxide

Carbon Monoxide

Make/Model:

NEXUS-470

NEXUS-470

NEXUS-470

Serial Number:

AEP99000154

AEP99000154

AEP99000154

Principal of Measurement: Last Calibration:

September 22, 2009

FTIR September 22, 2009 FTIR September 22, 2009

Cylinder Data

Cylinder Number:

CC-92945 CGA 660

Cylinder Volume:

Cylinder Pressure:

140 Cubic Feet 2000 psig, 70F

Cylinder Outlet: Expiration Date:

September 30, 2011

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Mike Duncan

Unmatched Excellence

Industry Leader in Specialty Gases, Equipment and Service Certificate of Analysis

- EPA PROTOCOL GAS -

CC184264 R-Mix29-Ant

Customer:

Am Test - Air Quality (Preston, WA)

Date Delivery Receipt

July 15, 2009 DR-25378

Gas Standard

25.0 ppm NO, 25.0 ppm SO2, 25.0 ppm CO/N2-EPA PROTOCOL

Final Analysis Date **Expiration Date**

July 13, 2009 July 13, 2011

DO NOT USE BELOW 150 psig

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

Reported Concentrations:

Nitric Oxide: 24.5 ppm +/- 0.24 ppm Sulfur Dioxide: 25.7 ppm +/- 0.25 ppm Carbon Monoxide: 25.2 ppm +/- 0.25 ppm

Nitrogen: Balance Total NOx: 24.5 ppm

** NOx for Reference Use Only **

Reference Standards

SRM/GMIS: Cylinder Number: Concentration:

GMIS CC-79739 **GMIS** CC-125502

GMIS CC-158976 25.1 ppm CO/N2

Expiration Date:

24.5 ppm NO/N2 01/20/11

25.8 ppm SO2/N2 07/29/10

08/04/10

Certification Instrumentation

Component: Make/Model: Serial Number: Nitric Oxide NEXUS-470 AEP99000154 FTIR

Sulfur Dioxide NEXUS-470 AEP99000154 FTIR

Carbon Monoxide NEXUS-470 AEP99000154 FTIR

Principal of Measurement: Last Calibration:

July 04, 2009

July 02, 2009

July 02, 2009

Cylinder Data

Cylinder Number: Cylinder Outlet:

CC-184264 CGA 660

Cylinder Volume: Cylinder Pressure:

140 Cubic Feet 2000 psig, 70°F

Expiration Date:

July 13, 2011

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Mike Duncan

Mike Dincon

Industry Leader in Specialty Gases, Equipment and Service

Certificate of Analysis

CC 310802

- EPA PROTOCOL GAS -

R-Mix30-AMT

Customer

Am Test - Air Quality (Preston, WA)

Date

April 14, 2009

Delivery Receipt

DR-24472

Gas Standard

490.0 ppm NO. 490.0 ppm SO2. 490.0 ppm CO/N2-EPA PROTOCOL

Final Analysis Date

April 09, 2009

Expiration Date

April 09, 2011

DO NOT USE BELOW 150 psig

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

Reported Concentrations:

Nitric Oxide: 527.4 ppm +/- 5.2 ppm

Sulfur Dioxide: 482.2 ppm +/- 4.8 ppm Carbon Monoxide: 492.8 ppm +/- 4.9 ppm

> Nitrogen: Balance Total NOx: 527.4 ppm

** NOx for Reference Use Only **

Reference Standards

SRM/GMIS:

GMIS/GMIS

GMIS/GMIS

GMIS

Cylinder Number:

CC-158975/CC-166610

CC-125502/CC-56859

CC-166528

Concentration:

437.5 ppm/748.2 ppm NO 387.7/717.2 ppm SO2/N2 496.3 ppm CO/N2 11/14/08 - 07/24/10

Expiration Date:

04/08/10 - 10/18/10

04/06/11

Certification Instrumentation

Component:

Nitric Oxide

Sulfur Dioxide

Carbon Monoxide

Make/Model: Serial Number: NEXUS-470 AEP99000154

April 02, 2009

NEXUS-470 AEP99000154 NEXUS-470 AEP99000154

Principal of Measurement:

FTIR

FTIR April 02, 2009

FTIR April 03, 2009

Cylinder Data

Last Calibration:

Cylinder Number:

CC-310802

CGA 660

Cylinder Volume: Cylinder Pressure:

140 Cubic Feet 2000 psig, 70°F

Cylinder Outlet: **Expiration Date:**

April 09, 2011

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Date:

Industry Leader in Specialty Gases, Equipment and Service Certificate of Analysis

RMix 31-AmT

- EPA PROTOCOL GAS -

Customer

Am Test - Air Quality (Preston, WA)

Date

June 11, 2009

Delivery Receipt

DR-25026

Gas Standard

47.5 ppm NO. 47.5 ppm SO2, 47.5 ppm CO/N2-EPA PROTOCOL

Final Analysis Date

June 08, 2009

Expiration Date

June 08, 2011

DO NOT USE BELOW 150 psig

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

Reported Concentrations:

Nitric Oxide: 46.9 ppm +/- 0.46 ppm Sulfur Dioxide: 48.5 ppm +/- 0.48 ppm

Carbon Monoxide: 47.5 ppm +/- 0.47 ppm

Nitrogen: Balance Total NOx: 46.9 ppm

** NOx for Reference Use Only **

Reference Standards

SRM/GMTS:

GMIS

GMIS

GMIS

Cylinder Number: Concentration:

CC-159052

CC-231494 50.87 ppm SO2/N2

CC-166617 51.0 ppm CO/N2

Expiration Date:

50.6 ppm NO/N2 09/18/10

01/28/11

09/18/10

Certification Instrumentation

Component:

Nitric Oxide

Sulfur Dioxide

Carbon Monoxide

Make/Model:

NEXUS-470

NEXUS-470

NEXUS-470

Serial Number:

AEP99000154

AEP99000154 FTIR

AEP99000154 FTIR

Principal of Measurement: Last Calibration:

FTIR June 02, 2009

June 03, 2009

June 04, 2009

Cylinder Data

Cylinder Number:

EB-0014555 CGA 660

Cylinder Volume: Cylinder Pressure:

140 Cubic Feet 2000 psig, 70°F

Cylinder Outlet: Expiration Date:

June 08, 2011

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Mike Duncon Mike Duncan

Unmatched Excellence

QA/QC Documentation

Procedures NO_x Analyzer Converter Efficiency Data Analyzer Interference Response Data Introduction The QA procedures outlined in the U. S. Environmental Protection Agency (EPA) test methods are followed, including procedures, equipment specifications, calibrations, sample extraction and handling, calculations, and performance tolerances. Many of the checks performed have been cited in the Sampling section of the report text. The results of those checks are on the applicable field data sheets in the Appendix.

Continuous Analyzer Methods Field crews operate the continuous analyzers according to the test method requirements, and Horizon's additional specifications. On site quality control procedures include:

- Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)
- System bias at low-scale (zero) and upscale calibration gases (within ± 5.0% of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or highlevel gases, or 0.5 ppmv absolute difference)
- System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases
- Leak free sampling system
- Data acquisition systems record 10-second data points or one-minute averages of one second readings
- NO₂ to NO conversion efficiency (before each test)
- Purge time (≥ 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average ≤ calibration span for each run)
- Stratification test (to be done during run 1 at three(3) or twelve(12)
 points according to EPA Method 7E; Method 3A, if done for molecular
 weight only, will be sampled near the centroid of the exhaust;
 stratification is check not normally applicable for RATAs)

Manual Equipment QC Procedures On site quality control procedures include pre- and post-test leak checks on trains and pitot systems. If pre-test checks indicate problems, the system is fixed and rechecked before starting testing. If post-test leak checks are not acceptable, the test run is voided and the run is repeated. Thermocouples and readouts are verified in the field to read ambient prior to the start of any heating or cooling devices.

Sample Handling Samples taken during testing are handled to prevent contamination from other runs and ambient conditions. Sample containers are glass, Teflon™, or polystyrene (filter petri dishes) and are pre-cleaned by the laboratory and in the Horizon Engineering shop. Sample levels are marked on containers and are verified by the laboratory. All particulate sample containers are kept upright and are delivered to the laboratory by Horizon personnel.

Data Processing Personnel performing data processing double-check that data entry and calculations are correct. Results include corrections for field blanks and analyzer drift. Any abnormal values are verified with testing personnel and the laboratory, if necessary.

After results are obtained, the data processing supervisor validates the data with the following actions:

- · verify data entry
- check for variability within replicate runs
- account for variability that is not within performance goals (check the method, testing, and operation of the plant)
- verify field quality checks

Equipment Calibrations Periodic calibrations are performed on each piece of measurement equipment according to manufacturers' specifications and applicable test method requirements. The Oregon Department of Environmental Quality (ODEQ) <u>Source Testing Calibration Requirements</u> sheet is used as a guideline. Calibrations are performed using primary standard references and calibration curves where applicable.

Dry Gas Meters Dry gas meters used in the manual sampling trains are calibrated at three rates using a standard dry gas meter that is never taken into the field. The standard meter is calibration verified by the Northwest Natural Gas meter shop once every year. Dry gas meters are post-test calibrated with documentation provided in test reports.

Thermocouples Sample box oven and impinger outlet thermocouples are calibration checked against an NIST traceable thermocouple and indicator system every six months at three points. Thermocouple indicators and temperature controllers are checked using a NIST traceable signal generator. Readouts are checked over their usable range and are adjusted if necessary (which is very unusual). Probe thermocouples are calibrated in the field using the ALT-011 alternate Method 2 calibration procedure, which is documented on the field data sheet for the first run the probe thermocouple was used.

Pitots Every six months, S-type pitots are calibrated in a wind tunnel at three points against a standard pitot using inclined manometers. They are examined for dents and distortion to the alignment, angles, lengths, and proximity to thermocouples before each test. Pitots are protected with covers during storage and handling until they are ready to be inserted in the sample ports.

Nozzles Nozzles are checked for nicks or dents and are measured on three diameters twice each year. Nozzles are also commonly calibrated in the field by taking the average of three consecutive diameter measurements as well as checking for nicks and dents. These field calibrations will be recorded on the field data sheet for the first run the nozzle was used.

NO₂ TO NO CONVERTER EFFICIENCY TEST Horizon Engineering, LLC

Analyzer ID:

299

Analyzer Model:

Thermo Environmental Instruments, Inc. Model 42i

Converter Type:

Molybdenum Converter @ 625 degrees C

Date:

September 24, 2010

Operator:

TAR

Calibration Gas ID:

EB-0016739

Procedure:

Method 7E, Section 8.2.4.1

Measured Concentration (Cdir)

47.7 ppm

Certified Concentration of Calibration Gas (C_v)

52.2 ppm

C_{dir} (measured concentration) x

100

= % conversion efficiency

C_v (certified concentration)

47.7

100

91.4 % efficiency

Method 7E Requirement, Section 8.2.4.1

90 % efficiency

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

INTERFERENCE RESPONSE TEST

Date of Test: 3/07/02 Name: Tim Hertel

Analyzer: Type / Model: O₂ / Servomex 1400 Serial Number: 000013

Results:

Test Gas	Concentration, ppmv or %	Analyzer Output Response, %	% of Span (25 %)
SO ₂	170.3 ppmv	0.0	0
*CO ₂	10%	0.0	0
**CO	512 ppmv	0.0	0

^{*}Used bottle of CO₂ at 100% concentration and diluted it with 100% N2 to get a concentration of about 10% CO₂.

Bias Check:

Test Gas	Concentration, %	Analyzer Output Response, %	Bias Check (%)
O ₂	20.95	20.9	0.2

Performance Specifications:

		<u>Allowable</u>	
<u>Analyzer</u>	EPA Ref.	<u>interference</u>	Gas Values To Introduce Into Analyzers
	Method	(% of analyzer span)	(EPA Method 20)
SO ₂	6C	7%	200±20 ppm
O_2	6C	7%	20.9±1 percent
CO ₂	6C	7%	10±1 percent
CO	20	2%	500±50 ppm

Note: Concentration for SO₂ was slightly lower than listed; 170.3 ppmv was the closest concentration cylinder available at the time of the interference checks.

^{**} Used CO cylinder with 5% concentration and diluted it with 100% N_2 to get a concentration of about 500 ppmv CO.

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

INTERFERENCE RESPONSE TEST

Date of Test: <u>3/01 & 3/07/2002</u> Name: <u>Tim Hertel</u>

Analyzer: Type / Model: CO₂ / Servomex 1440 Serial Number: 000166

Results:

	Concentration,		% of Span
Test Gas	ppmv or %	Analyzer Output Response, %	(25 %)
SO ₂	170.3 ppmv	0.0	0.0
O ₂	20.95%	0.0	0.0
*CO	534 ppmv	0.0	0.0

^{*} Used CO cylinder with 5% concentration and diluted it with 100% N_2 to get a concentration of about 500 ppmv CO.

Bias Check:

Test Gas	Concentration, %	Analyzer Output Response, %	Bias Check (%)
**CO ₂	10.3	10.3	0.0

^{**} Used bottle of CO_2 at 100% concentration and diluted it with 100% N_2 to get a concentration of about 10% CO_2 .

Performance Specifications:

		Allowable	
<u>Analyzer</u>	EPA Ref.	Interference	Gas Values To Introduce Into Analyzers
	<u>Method</u>	(% of analyzer span)	(EPA Method 20)
SO₂	6C	7%	200±20 ppm
O_2	6C	7%	20.9±1 percent
CO ₂	6C	7%	10±1 percent
CO	20	2%	500±50 ppm
			• •

Note: Concentration for SO₂ was slightly lower than listed; 170.3 ppmv was the closest concentration cylinder available at the time of the interference checks.

7E-4 Interference Response

Date of Test	9/29/2007-
Analyzer Type	Thermo
Model No	42I-HL
Serial Number	
CleanAir Asset#	CleanAir
Instrument Range	100.00 ppm
Span Cal Response	90 ppm
Zero Cal Response	0.00 ppm
2.5% of Calibration Span	2.25 ppm
Tester	Art Dean

Test Location: CleanAir

500 West Wood St. Palatine, IL 60067

You may introduce the appropriate interference test gasses into the analyzer separately or as mixtures. This test must be performed both with and without NOX.

Interferences are gasses that are potentially encountered during a test.

The total interference response must not be greater than 2.5% of the calibration span for the analyzer tested.

Gas Mixtures			
Test Gas Type	Contain	Analyzer Response	Absolute Error
NO	13.50 ppm	NA	NA.
NO2	15.24 ppm	NA	NA
HCL	9.32 ppm	90.00	0.00%
H2	44.64 ppm	90.00	0.00%
SO2	17.21 ppm	90.50	0.56%
CH4	44.17 ppm	90.00	0.00%
NH3	7 8.73 ppm	90.00	0.00%
CO	44.79 ppm	90.00	0,00%
N2O '	8.91 ppm	90.00	0.00%
CO2 High	. 15.17 %	89.30	0.78%
CO2'Low	4.45 %	89.30	0.78%
H2O	1.27 %	89.00	0.16%
Experted Reading w/H	20	88.96	

Test Gas Type	- Conc/Unit	Analyzer Response	Absolute Error
NO	15.15 ppm	NA	NA
NO2	17.1 ppm	NA	NA
HCL	10.46 ppm	0.12	0.13%
H2	50.1 ppm	0.00	0.00%
SO2	19.31 ppm	0.40	0.44%
CH4	49.57 ppm	0.00	0.00%
NH3	9.8 ppm	0.00	0.00%
CO	50.27 ppm	0.00	0.00%
N2O	10 ppm	0.00	0.00%
CO2 High	17.02 %	0.00	0.00%
CO2 Low	4.99 %	0.00	. 0.00%
H2O	1.27 %	, 0.00	0.00%

Gas Type	Conc / Unit	Cylinder #
NO	15.15 ppm	· AAL20914
NO2	17.1 ppm	1L1652
HCL	10.46 ppm	NA25733
H2	50.1 ppm	ALM52896 >
SO2	19.31 ppm	ALM46049
CH4	49.57 ppm	AAL21367
NH3	9.80 ppm	ALM52993
CO	50.27 ppm	ALM10054
N2O	10.00 ppm	ALM51673
CO2 High	17.02 %	ALM 36532
CO2	4.99 %	ALM37876
%H2O	1.27 %	MKS204090
N2	99.99 %	K24662
NOX	826.2 ppm	ALM5105

Tester: Au

108

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

INTERFERENCE RESPONSE TEST

Date of Test: 9/30/03

Name: David Bagwell

Analyzer: Type / Model: SO₂ / 721-M

Serial Number: 000295

Results:

	Concentration,	Analyzer Output Response,	% of Span
Test Gas	ppmv or %	ppmv	(200 ppmv)
O ₂	20.8%	0.0	0.0
CO ₂	12.71%	0.0	0.0
CO	472 ppmv	0.0	0.0

Bias Check:

	Concentration,	Analyzer Output Response,	
Test Gas	ppmv	ppmv	Bias Check (%)
SO ₂	170.3	170.3	0.0

Performance Specifications:

		<u>Allowable</u>	
<u>Analyzer</u>	EPA Ref.	<u>Interference</u>	Gas Values To Introduce Into Analyzers
	Method	(% of analyzer span)	(EPA Method 20)
SO ₂	6C	7%	200±20 ppm
O ₂	6C	7%	20.9±1 percent
CO ₂	6C	7%	10±1 percent
CO	20	2%	500±50 ppm

Note: CO₂ concentration was slightly higher than listed; 12.71% was the closest concentration cylinder available.

Correspondence
Source Test Plan and Correspondence
Permit (Selected Pages)

e-mail-1

13585 NE Whitaker Way • Portland, OR 97230 Phone (503) 255-5050 • Fax (503) 255-0505 www.horizonengineering.com

January 5, 2011

Project No. 4212

Mr. Gerry Pade Puget Sound Clean Air Agency 1904 3rd Ave, Suite 105 Seattle, WA 98101-3317

Re: Source Testing:

Saint-Gobain Containers, Inc. (SGCI)

5801 East Marginal Way S. Seattle, Washington 98134

This correspondence is notice that Horizon Engineering is to do source testing for the above-referenced facility, scheduled for February 8, 2011. This will serve as the Source Test Plan unless changes are requested prior to the start of testing.

- 1. **Sources to be Tested:** Two Glass Melting Furnaces (Two Sample Points Total); No. 3 and No. 4.
- 2. **Purpose of the Testing:** Compliance with Permit No. 11656. NO_x and SO₂ testing for Furnace No. 4 is being done in accordance with the Consent Decree (GCD) that was entered on May 7, 2010, negotiated between Saint-Gobain Containers, Inc. the EPA and affected states. Chrome testing for Furnace No. 3 is to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants for Glass Manufacturing Area Sources, 40 CFR Part 63, Subpart SSSSSS for affected sources. SGCI previously tested Furnace 3 for chromium and demonstrated compliance with the National Emission Standard for Hazardous Air Pollutants for Glass Manufacturing Area Sources, 40 CFR Part 63, Subpart SSSSS for affected sources, however, the earlier test was performed when the furnace was manufacturing the color antique. SGCI is performing this subsequent test during the manufacture of champagne green color glass which has a higher chromium input in the batch. Note that other furnaces have been tested when running champagne green and demonstrated compliance.
- 3. **Source Descriptions:** There are four glass-melting furnaces at the site. Furnaces Nos. 2, 3 & 5 are oxy-fuel fired, with oxygen gas being used to support combustion rather than ambient air. This process results in greater overall energy efficiency, improved energy transfer to the glass, and a significant reduction in NO_x emissions. The primary fuel source of Furnace Nos. 2, 3, & 5 is natural gas with additional energy input from electricity delivered through electrodes immersed in the glass (electric boosting).

Furnace No. 4 is an end-port regenerative furnace and is air-fuel fired, also utilizing natural gas as its primary fuel source. As a regenerative furnace, its increased fuel efficiency is realized by utilizing the heat generated in the combustion process to preheat the air and fuel used in further combustion processes. Additionally, increased thermal efficiency is realized by the regenerative furnace in providing heat to the primary glass-melting process itself.

- 4. Pollutants to be Tested: NOx, SO2, and chrome
- 5. **Test Methods to be Used:** Testing will be conducted in accordance with EPA Methods in <u>Title 40 Code of Federal Regulations Part 60 (40 CFR 60)</u>, Appendix A, July 1, 2007.

Glass Melting Furnace No. 3

Flow Rate:

EPA Methods 1 and 2 (pitot traverses w/PSCAA Method 29)

CO₂ and O₂:

EPA Method 3/3A (integrated bag samples NDIR and

paramagnetic analyzers)

Moisture:

EPA Method 4 (incorporated w/EPA Method 29)

Chrome:

EPA Method 29 (isokinetic impinger technique with analysis

by ICP-OES/ICP-MS)

Glass Melting Furnace No. 4

Flow Rate:

EPA Methods 1 and 2 (S- or p-type pitot flow traverses) EPA Method 3A (NDIR and paramagnetic analyzers)

CO₂ and O₂:

EPA Method 4 (impinger train technique)

Moisture: SO₂:

EPA Method 6C (non-dispersive ultraviolet analyzer)

 NO_{x} :

EPA Method 7E (chemiluminescent analyzer)

- Continuous Analyzer Gas Sampling: One, three, or twelve points will be sampled for EPA Methods 3A, 6C, and 7E. The number and location of the sample points will be based on a stratification check done according to EPA Method 7E.
- 7. Integrated Bag Gas Sampling: EPA Method 3/3A will be sampled simultaneously and traversed with EPA Method 29 sampling probe. Tedlar bags will be filled off the exhaust of the sampling train.
- 8. Quality Assurance /Quality Control (QA/QC): Documentation of the procedures and results will be presented in the source test report for review. This documentation will include at least the following:

<u>Continuous analyzer QC procedures:</u> Field crews will operate the analyzers according to the test method requirements with additional data backup. On-site quality control procedures include:

 Analyzer calibration error before initial run and after a failed system bias or drift test (within ± 2.0% of the calibration span of the analyzer for the low, mid, and high-level gases or 0.5 ppmv absolute difference)

- System bias at low-scale (zero) and upscale calibration gases (within $\pm 5.0\%$ of the calibration span or 0.5 ppmv absolute difference)
- Drift check (within ±3.0% of calibration span for low, and mid or high-level gases, or 0.5 ppmv absolute difference) System response time (during initial sampling system bias test)
- Checks performed with EPA Protocol 1 or NIST traceable gases
- Oxygen analyzers will be spanned with ambient O₂ unless there is an O₂ correction.
- Leak free sampling system
- Data acquisition systems record 10-second data points or oneminute averages of one second readings
- NO₂ to NO conversion efficiency test will be provided in report
- Purge time (≥ 2 times system response time and will be done before starting run 1, whenever the gas probe is removed and re-inserted into the stack, and after bias checks)
- Sample time (at least two times the system response time at each sample point)
- Sample flow rate (within approximately 10% of the flow rate established during system response time check)
- Interference checks for analyzers used will be included in the final test report
- Average concentration (run average ≤ calibration span for each
- Stratification test (to be done during run 1 at three(3) or twelve(12) points according to EPA Method 7E)

Continuous analyzer QC procedures for Tedlar bags: Field crews will operate the analyzers according to the test method requirements and Horizon's additional specifications. On-site quality control procedures include:

- Daily calibration (zero and span) and calibration error (linearity) checks
- Tedlar bags will be analyzed after daily calibration and calibration error checks
- Checks performed with EPA Protocol 1 gases
- Data acquisition systems record one-minute averages of one second readings

Manual equipment QC procedures: Operators will perform pre- and post-test leak checks on the sampling system and pitot lines. Thermocouples attached to the pitots and probes are calibrated in the field using EPA Alternate Method 11. A single-point calibration on each thermocouple system using a reference thermometer is performed. Thermocouples must agree within ±2°F with the reference thermometer. Also, prior to use, thermocouple systems are checked for ambient temperature before heaters are started. Nozzles are inspected for nicks or dents and pitots are examined before and after each use to confirm that they are still aligned. Pre- and post-test calibrations on the meter boxes will be included with the report, along with semi-annual calibrations of critical orifices, pitots, nozzles and thermocouples (sample box impinger outlet and oven, meter box inlet and outlet, and thermocouple indicators). Blank reagents are submitted to the laboratory with the samples. Liquid levels are marked on sample jars in the field and are verified by the laboratory.

Audit Requirement: The EPA Stationary Source Audit Sample Program was restructured and promulgated on September 30, 2010 and was made effective 30 days after that date. The Standard requires that the Facility or their representative order audit samples from an accredited Provider. Currently there are no accredited audit sample providers, and therefore no audit samples are available. If samples are not available, then audit sample analysis is not required for the EPA methods used for compliance testing. The TNI website www.nelac-institute.org/ssas/ will be referred to for a list of available accredited audit providers and audits.

9. Number of Sampling Replicates and their Duration:

Three (3) test runs of at least 120 minutes each will be performed on Glass Melting Furnace No. 3 for chrome.

Three (3) test runs of approximately 60 minutes each will be performed on Glass Melting Furnace No. 4 for SO₂ and NO_x.

10. Reporting Units for Results: Test results will be expressed as concentrations (ppmv, gr/dscf), as rates (lb/hr), and on a production basis (lb/ton of glass melted).

11. Emission Limits:

Source	Emission	Limit
Furnace No. 3	Chrome	0.02 lb/ton
Furnace No. 4	NO _x	Interim NOx limit based on emission factor and annual production
	SO ₂	2.5 lb/ton

12. Horizon Engrg. Contacts: David Bagwell or

Preston Skaggs

(503) 255-5050

Fax (503) 255-0505

E-mail <u>dbagwell@horizonengineering.com</u> pskaggs@horizonengineering.com

13. Parent Company Contact: Jayne Browning

(765) 741-7112

Fax (765) 741-4846

E-mail jayne.e.browning@saint-gobain.com

14. Source Site Personnel: Marlon Trigg

(206) 768-6221

Mobile (206) 730-1888 Fax (206) 768-6266

E-mail Marlon.Trigg@saint-gobain.com

15. **Regulatory Contacts:** Gerry Pade or

Tom Hudson (206) 689-4065 (206) 689-4026

Fax (206) 343-7522

E-mail <u>gerryp@pscleanair.org</u> tomh@pscleanair.org

facilitysubmittal@pscleanair.org

- 16. Applicable Process/Production/Control Information: Process operating data and production information that characterizes the source operation is considered to be:
 - Fuel usage during each run
 - Amount of glass melted
 - All other normally recorded process information

Process/Production/Control information is to be gathered by the Source Site Personnel and the production rate provided to Horizon for inclusion in the report. SGCI will provide confidential process information to PSCAA in a separate submittal.

The sources must operate at a normal rate during testing.

17. Other Considerations:

Furnace No. 3 has only one available port for sampling.

- Each furnace exhaust has been checked for cyclonic flow during past testing and no cyclonic conditions exist at any exhaust. Cyclonic flow checks were done on September 22, 2005 and February 25, 2009 and are documented in those test reports.
- 18. Administrative: Unless notified prior to the start of testing, this test plan is considered to be approved for compliance testing of this source. A letter acknowledging receipt of this plan and agreement on the content (or changes as necessary) would be appreciated.

The Agency will be notified of any changes in source test plans prior to testing. It is recognized that significant changes not acknowledged, which could affect accuracy and reliability of the results, could result in test report rejection.

Source test reports will be prepared by Horizon Engineering and will include all results and example calculations, field sampling and data reduction procedures, laboratory analysis reports, and QA/QC documentation. Source test reports will be submitted to you within 60 days of the completion of the field work, unless another deadline is agreed upon. Saint-Gobain Containers should send one (1) copy of the completed source test report to you at the address above.

Any questions or comments relating to this test plan should be directed to me.

Sincerely.

Sil Aguel

David Bagwell, QSTI Managing Member Horizon Engineering

cc: Jayne Browning, Saint-Gobain Containers, Inc. Marlon Trigg, Saint-Gobain Containers, Inc. Valerie Krulic, Saint-Gobain Containers, Inc.

Agency Use Only: Reg No:

Facility Name: Saint-Gobain Containers

PUGET SOUND CLEAN AIR AGENCY

1904 3rd Ave Ste 105 Seattle WA 98101-3317

Telephone: (206)689-4052; Fax: (206)343-7522 www.pscleanair.org

facilitysubmittal@pscleanair.org

COMPLIANCE TEST NOTIFICATION

This Notification of intended action does not constitute approval by the Agency nor does it satisfy a requirement for a test plan, if one exists.

Date Logged:

Facility Contact Information for Test

Facility Name: Saint-Godain Containers			Name: Mario	n Trigg
Facility Address (include city/state/zip): 5801 East Marginal Way South Seattle, Washington 98134 Test Contractor: Horizon Engineering Test Contractor Mailing Address: 13585 NE Whitaker Way			Phone: 206-768 E-Mail: Mark	730-1888 3-6266 on.Trigg@saint-gobain.com ctor Contact Information Bagwell
Portland, Oregon 97230			Fax: 503-255 E-Mail: dbag	-0505 well@horizonengineering.com
Testing Dates: February 8, 2011				
Emission Unit	Pollutant Tested		t Method(s) ill to be used)	Purpose for the Test (see Note below)
Glass Melting Furnace No. 4	NOx & SO ₂	EPA 6C, &	1, 2, 3A, 4, 7E	Compliance with Consent Decree entered on 5/7/10
Glass Melting Furnace No. 3	Chrome	EPA N	Method 29	40 CFR Part 63, Subpart SSSSSS
Any Test Method Deviations? ☑ Yes (attach explanation) No Method Deviations: Furnace No. 3 only has one port Written Test Plan Required? ☑ Yes No Unknown	Attachments to Source Test Pla		otification? ☑	Yes (list below) No
Person Submitting Notification: David Bagwell			Affiliation Horizon	on: Engineering
NOTE TO A MODONICOLLADO A				

Date Received:

NOTE: For example, NSPS/NESHAP Subpart, citation, NOC Order of Approval #, PSD, Puget Sound Clean Air Agency Regulations (I, II, or III), RATA, or Other. Please include the specific requirement if you have it.

David Bagwell

From: Gerry Pade [GerryP@pscleanair.org]

Sent: Friday, January 28, 2011 10:28 AM

To: David Bagwell; Thompson, Patti (pattithompson@dwt.com)

Subject: RE: Test plan and notification

David Bagwell Horizon Engineering

Dear Mr. Bagwell,

To the best of my knowledge, there are no provisions in 40 CFR Part 63 under which the Agency can waive the requirement in Section 63.7(b)(1) to notify the Administrator at least 60 days in advance of a test for compliance with a NESHAP. Nonetheless, we acknowledge the difficulties associated with forecasting the production that far in advance and have no particular objection to your testing furnace 3 for chromium on 2/8/11. We look forward to observing the test and reviewing the report.

Gerry Pade
Puget Sound Clean Air Agency
1904 3rd Ave, Suite 105
Seattle, WA 98101
(206) 689-4065
gerryp@pscleanair.org

"Working together for clean air"

o_ _/ > _ (*)\(*)

From: David Bagwell [mailto:dbagwell@horizonengineerlng.com]

Sent: Wednesday, January 05, 2011 11:25 AM

To: Gerry Pade; Puget Sound Clean Air Agency - Facility Submittal

Cc: 'Browning, Jayne E.'; 'Trigg, Marlon'; 'Thompson, Patti'

Subject: Test plan and notification

Mr. Pade,

Attached are the Source Test Plan and notification for testing at Saint-Gobain Containers scheduled for February 8, 2011.

We would like to request a waiver to the normal 60 day notification required for the chrome testing. It is very difficult to forecast appropriate production for the testing that far in advance.

Please direct all future inquiries regarding these test plans and notifications to:

Patti Thompson, Partner Davis Wright Tremaine LLP Rainier Plaza, Suite 2300 777 – 108th Ave. NE Bellevue WA 98004-5149 425.646.6112 pattithompson@dwt.com

Thank you,

David Bagwell, QSTI
Managing Member
Horizon Engineering, LLC
AmTest Air Quality an affiliate of Horizon Engineering, LLC
503-255-5050 Portland, OR office
425-222-7746 Preston, WA office
503-381-7340 Mobile
www.horizonengineering.com
www.amtestairquality.com

■ 4. Part 63 is amended by adding subpart SSSSSS to read as follows:

Subpart SSSSSS—National Emission Standards for Hazardous Air Pollutants for Glass Manufacturing Area Sources

Applicability and Compliance Dates

- 63.11448 Am I subject to this subpart? 63.11449 What parts of my plant does this subpart cover?
- 63,11450 What are my compliance dates?

Standards, Compliance, and Monitoring Requirements

- 63.11451 What are the standards for new and existing sources?
- 63.11452 What are the performance test requirements for new and existing sources?
- 63.11453 What are the initial compliance demonstration requirements for new and existing sources?
- 63.11454 What are the monitoring requirements for new and existing sources?
- 63.11455 What are the continuous compliance requirements for new and existing sources?

Notifications and Records

- 63.11456 What are the notification requirements?
- 63.11457 What are the recordkeeping requirements?

Other Requirements and Information

- 63.11458 What General Provisions apply to this subpart?
- 63.11459 What definitions apply to this subpart?
- 63.11460 Who implements and enforces this subpart?
- 63.11461 [Reserved]

Tables to Subpart SSSSS of Part 63

Table 1 to Subpart SSSSS of Part 63— Emission Limits

Table 2 to Subpart SSSSS of Part 63— Applicability of General Provisions to Subpart SSSSS

Applicability and Compliance Dates

§ 63.11448 Am I subject to this subpart?

You are subject to this subpart if you own or operate a glass manufacturing facility that is an area source of hazardous air pollutant (HAP) emissions and meets all of the criteria specified in paragraphs (a) through (c) of this section.

- (a) A glass manufacturing facility is a plant site that manufactures flat glass, glass containers, or pressed and blown glass by melting a mixture of raw materials, as defined in § 63.11459, to produce molten glass and form the molten glass into sheets, containers, or other shapes.
- (b) An area source of HAP emissions is any stationary source or group of stationary sources within a contiguous area under common control that does

not have the potential to emit any single HAP at a rate of 9.07 megagrams per year (Mg/yr) (10 tons per year (tpy)) or more and any combination of HAP at a rate of 22.68 Mg/yr (25 tpy) or more.

(c) Your glass manufacturing facility uses one or more continuous furnaces to produce glass that contains compounds of one or more glass manufacturing metal HAP, as defined in § 63.11459, as raw materials in a glass manufacturing batch formulation.

§ 63.11449 What parts of my plant does this subpart cover?

(a) This subpart applies to each existing or new affected glass melting furnace that is located at a glass manufacturing facility and satisfies the requirements specified in paragraphs (a)(1) through (3) of this section.

 The furnace is a continuous furnace, as defined in §63.11459.

- (2) The furnace is charged with compounds of one or more glass manufacturing metal HAP as raw materials.
- (3) The furnace is used to produce glass, which contains one or more of the glass manufacturing metal HAP as raw materials, at a rate of at least 45 Mg/yr (50 tox)

(b) A furnace that is a research and development process unit, as defined in § 63.11459, is not an affected furnace

under this subpart.

(c) An affected source is an existing source if you commenced construction or reconstruction of the affected source on or before September 20, 2007.

(d) An affected source is a new source if you commenced construction or reconstruction of the affected source after September 20, 2007.

(e) If you own or operate an area source subject to this subpart, you must obtain a permit under 40 CFR part 70 or 40 CFR part 71.

§ 63.11450 What are my compliance dates?

(a) If you have an existing affected source, you must comply with the applicable emission limits specified in § 63.11451 of this subpart no later than December 28, 2009. As specified in section 112(i)(3)(B) of the Clean Air Act and in § 63.6(i)(4)(A), you may request that the Administrator or delegated authority grant an extension allowing up to 1 additional year to comply with the applicable emission limits if such additional period is necessary for the installation of emission controls.

(b) If you have a new affected source, you must comply with this subpart according to paragraphs (b)(1) and (2) of this section.

 If you start up your affected source on or before December 26, 2007, you must comply with the applicable emission limit specified in § 63.11451 no leter than December 26, 2007.

(2) If you start up your affected source after December 26, 2007, you must comply with the applicable emission limit specified in § 63.11451 upon initial startup of your affected source.

(c) If you own or operate a furnace that produces glass containing one or more glass manufacturing metal HAP as raw materials at an annual rate of less than 45 Mg/yr (50 tpy), and you increase glass production for that furnace to an annual rate of at least 45 Mg/yr (50 tpy), you must comply with the applicable emission limit specified in § 63.11451 within 2 years of the date on which you increased the glass production rate for the furnace to at least 45 Mg/yr (50 tpy).

(d) If you own or operate a furnace that produces glass at an annual rate of at least 45 Mg/yr (50 tpy) and is not charged with glass manufacturing metal HAP, and you begin production of a glass product that includes one or more glass manufacturing metal HAP as raw materials, and you produce at least 45 Mg/yr (50 tpy) of this glass product, you must comply with the applicable emission limit specified in § 63.11451 within 2 years of the date on which you introduced production of the glass product that contains glass manufacturing metal HAP.

(e) You must meet the notification requirements in § 63.11456 according to the schedule in § 63.11456 and in 40 CFR part 63, subpart A. Some of the notifications must be submitted before you are required to comply with emission limits specified in this subpart.

Standards, Compliance, and Monitoring Requirements

§ 63.11451 What are the standards for new and existing sources?

If you are an owner or operator of an affected furnace, as defined in § 63.11449(a), you must meet the applicable emission limit specified in Table 1 to this subpart.

§ 63.11452 What are the performance test requirements for new and existing sources?

(a) If you own or operate an affected furnace that is subject to an emission limit specified in Table 1 to this subpart, you must conduct a performance test according to paragraphs (a)(1) through (3) and paragraph (b) of this section.

(1) For each affected furnace, you must conduct a performance test within 180 days after your compliance date and report the results in your Notification of Compliance Status, except as specified in paragraph (a)(2) of this section.

- (2) You are not required to conduct a performance test on the affected furnace if you satisfy the conditions described in paragraphs (a)(2)(i) through (iii) of this section.
- (i) You conducted a performance test on the affected furnace within the past 5 years of the compliance date using the same test methods and procedures specified in paragraph (b) of this section.
- (ii) The performance test demonstrated that the affected furnace met the applicable emission limit specified in Table 1 to this subpart.
- (iii) Either no process changes have been made since the test, or you can demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance with the applicable emission limit.
- (3) If you operate multiple identical furnaces, as defined in § 63.11459, that are affected furnaces, you are required to test only one of the identical furnaces if you meet the conditions specified in paragraphs (a)(3)(i) through (iii) of this section.
- (i) You must conduct the performance test while the furnace is producing glass that has the greatest potential to emit the glass manufacturing metal HAP from among the glass formulations that are used in any of the identical furnaces.
- (ii) You certify in your Notification of Compliance Status that the identical furnaces meet the definition of identical furnaces specified in § 63.11459.
- (iii) You provide in your Notification of Compliance Status documentation that demonstrates why the tested glass formulation has the greatest potential to emit the glass manufacturing metal
- (b) You must conduct each performance test according to the requirements in § 63.7 and paragraphs (b)(1) through (12) and either paragraph (b)(13) or (b)(14) of this section.
- (1) Install and validate all monitoring equipment required by this subpart before conducting the performance test.
- (2) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in $\S 63.7(e)(1)$.
- (3) Conduct the test while the source is operating at the maximum production rate.
- (4) Conduct at least three separate test runs with a minimum duration of 1 hour for each test run, as specified in § 63.7(e)(3).
 - (5) Record the test date.
- (6) Identify the emission source tested.

- (7) Collect and record the emission test data listed in this section for each run of the performance test.
- (8) Locate all sampling sites at the outlet of the furnace control device or at the furnace stack prior to any releases to the atmosphere.
- (9) Select the locations of sampling ports and the number of traverse points using Method 1 or 1A of 40 CFR part 60, appendix A-1.
- (10) Measure the gas velocity and volumetric flow rate using Method 2, 2A, 2C, 2F, or 2G of 40 CFR part 60, appendices A-1 and A-2, during each
- (11) Conduct gas molecular weight analysis using Methods 3, 3A, or 3B of 40 CFR part 60, appendix A-2, during each test run. You may use ANSI/ASME PTC 19.10–1981, Flue and Exhaust Gas Analyses (incorporated by reference see § 63.14) as an alternative to EPA Method 3B.
- (12) Measure gas moisture content using Method 4 of 40 CFR part 60, appendix A-3, during each test run.
- (13) To meet the particulate matter (PM) emission limit specified in Table 1 to this subpert, you must conduct the procedures specified in paragraphs (b)(13)(i) through (v) of this section.
- (i) Measure the PM mass emission rate at the outlet of the control device or at the stack using Method 5 or 17 of 40 CFR part 60, appendices A-3 or A-6, for each test run.
- (ii) Calculate the PM mass emission rate in the exhaust stream for each test
- (iii) Measure and record the glass production rate (kilograms (tons) per hour of product) for each test run.
- (iv) Calculate the production-based PM mass emission rate (g/kg (lb/ton)) for each test run using Equation 1 of this

$$MP = \frac{ER}{P}$$
 (Equation 1)

Where:

- MP = Production-based PM mass emission rate, grams of PM per kilogram (pounds of PM per ton) of glass produced.
- ER = PM mass emission rate measured using Methods 5 or 17 during each performance test run, grams (pounds) per
- P = Average glass production rate for the performance test, kilograms (tons) of glass produced per hour.
- (v) Calculate the 3-hour block average production-based PM mass emission rate as the average of the productionbased PM mass emission rates for each
- (14) To meet the metal HAP emission limit specified in Table 1 to this

subpart, you must conduct the procedures specified in paragraphs (b)(14)(i) through (v) of this section.

(i) Measure the metal HAP mass emission rate at the outlet of the control device or at the stack using Method 29 of 40 CFR part 60, appendix A-8, for each test run.

(ii) Calculate the metal HAP mass emission rate in the exhaust stream for the glass manufacturing metal HAP that are added as raw materials to the glass manufacturing formulation for each test

(iii) Measure and record the glass production rate (kilograms (tons) per hour of product) for each test run.

(iv) Calculate the production-based metal HAP mass emission rate (g/kg (lb/ ton)) for each test run using Equation 2 of this section.

$$MPM = \frac{ERM}{P}$$
 (Equation 2)

Where:

MPM = Production-based metal HAP mass emission rate, grams of metal HAP per kilogram (pounds of metal HAP per ton) of glass produced.

ERM = Sum of the metal HAP mass emission rates for the glass manufacturing metal HAP that are added as raw materials to the glass manufacturing formulation and are measured using Method 29 during each performance test run, grams (pounds) per hour.

P = Average glass production rate for the performance test, kilograms (tons) of glass produced per hour.

(v) Calculate the 3-hour block average production-based metal HAP mass emission rate as the average of the production-based metal HAP mass emission rates for each test run.

§ 63.11453 What are the initial compliance demonstration requirements for new and existing sources?

(a) If you own or operate an affected source, you must submit a Notification of Compliance Status in accordance with §§ 63.9(h) and 63.11456(b)

(b) For each existing affected furnace that is subject to the emission limits specified in Table 1 to this subpart, you must demonstrate initial compliance according to the requirements in paragraphs (b)(1) through (4) of this section.

(1) For each fabric filter that is used to meet the emission limit specified in Table 1 to this subpart, you must visually inspect the system ductwork and fabric filter unit for leaks. You must also inspect the inside of each fabric filter for structural integrity and fabric filter condition. You must record the results of the inspection and any maintenance action as required in 120 § 63.11457(a)(6).

(2) For each electrostatic precipitator (ESP) that is used to meet the emission limit specified in Table 1 to this subpart, you must verify the proper functioning of the electronic controls for corona power and rapper operation, that the corona wires are energized, and that adequate air pressure is present on the rapper manifold. You must also visually inspect the system ductwork and ESP housing unit and hopper for leaks and inspect the interior of the ESP to determine the condition and integrity of corona wires, collection plates, hopper, and air diffuser plates. You must record the results of the inspection and any maintenance action as required in § 63.11457(a)(6).

(3) You must conduct each inspection specified in paragraphs (b)(1) and (2) of this section no later than 60 days after your applicable compliance date specified in § 63.11450, except as specified in paragraphs (b)(3)(i) and (ii)

of this section.

(i) An initial inspection of the internal components of a fabric filter is not required if an inspection has been performed within the past 12 months.

(ii) An initial inspection of the internal components of an ESP is not required if an inspection has been performed within the past 24 months.

(4) You must satisfy the applicable requirements for performance tests

specified in § 63.11452.

(c) For each new affected furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with a fabric filter, you must install, operate, and maintain a bag leak detection system according to paragraphs (c)(1) through (3) of this section.

(1) Each bag leak detection system must meet the specifications and requirements in paragraphs (c)(1)(i)

through (viii) of this section.

(i) The bag leak detection system must be certified by the manufacturer to be capable of detecting PM emissions at concentrations of 1 milligram per dry standard cubic meter (0.00044 grains per actual cubic foot) or less.

(ii) The bag leak detection system sensor must provide output of relative PM loadings. The owner or operator shall continuously record the output from the bag leak detection system using electronic or other means (e.g., using a strip chart recorder or a data logger).

(iii) The bag leak detection system must be equipped with an alarm system that will sound when the system detects an increase in relative particulate loading over the alarm set point established according to paragraph (c)(1)(iv) of this section, and the alarm must be located such that it can be

heard by the appropriate plant personnel.

(iv) In the initial adjustment of the bag leak detection system, you must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay time.

(v) Following initial adjustment, you shall not adjust the averaging period, alarm set point, or alarm delay time without approval from the Administrator or delegated authority except as provided in paragraph

(c)(1)(vi) of this section.

(vi) Once per quarter, you may adjust the sensitivity of the bag leak detection system to account for seasonal effects, including temperature and humidity, according to the procedures identified in the site-specific monitoring plan required by paragraph (c)(2) of this section.

(vii) You must install the bag leak detection sensor downstream of the

fabric filter.

(viii) Where multiple detectors are required, the system's instrumentation and alarm may be shared among detectors

(2) You must develop and submit to the Administrator or delegated authority for approval a site-specific monitoring plan for each bag leak detection system. You must operate and maintain the bag leak detection system according to the site-specific monitoring plan at all times. Each monitoring plan must describe the items in paragraphs (c)(2)(i) through (vi) of this section.

(i) Installation of the bag leak

detection system;

 (ii) Initial and periodic adjustment of the bag leak detection system, including how the alarm set-point will be established;

(iii) Operation of the bag leak detection system, including quality

assurance procedures;

(iv) How the bag leak detection system will be maintained, including a routine maintenance schedule and spare parts inventory list;

 (v) How the bag leak detection system output will be recorded and stored; and

(vi) Corrective action procedures as specified in paragraph (c)(3) of this section. In approving the site-specific monitoring plan, the Administrator or delegated authority may allow owners and operators more than 3 hours to alleviate a specific condition that causes an alarm if the owner or operator identifies in the monitoring plan this specific condition as one that could lead to an alarm, adequately explains why it is not feasible to alleviate this condition within 3 hours of the time the alarm

occurs, and demonstrates that the requested time will ensure alleviation of this condition as expeditiously as practicable.

(3) For each bag leak detection system, you must initiate procedures to determine the cause of every alarm within 1 hour of the alarm. Except as provided in paragraph (c)(2)(vi) of this section, you must alleviate the cause of the alarm within 3 hours of the alarm by taking whatever corrective action(s) are necessary. Corrective actions may include, but are not limited to the following:

 (i) Inspecting the fabric filter for air leaks, torn or broken bags or filter media, or any other condition that may cause an increase in PM emissions;

(ii) Sealing off defective bags or filter

media;

(iii) Replacing defective bags or filter media or otherwise repairing the control device;

(iv) Sealing off a defective fabric filter

compartment;

 (v) Cleaning the bag leak detection system probe or otherwise repairing the bag leak detection system; or

(vi) Shutting down the process producing the PM emissions.

- (d) For each new affected furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with an ESP, you must install, operate, and maintain according to the manufacturer's specifications, one or more continuous parameter monitoring systems (CPMS) for measuring and recording the secondary voltage and secondary electrical current to each field of the ESP according to paragraphs (d)(1) through (13) of this section.
- (1) The CPMS must have an accuracy of 1 percent of the secondary voltage and secondary electrical current, or better.
- (2) Your CPMS must be capable of measuring the secondary voltage and secondary electrical current over a range that extends from a value that is at least 20 percent less than the lowest value that you expect your CPMS to measure, to a value that is at least 20 percent greater than the highest value that you expect your CPMS to measure.

(3) The signal conditioner, wiring, power supply, and data acquisition and recording system of your CPMS must be compatible with the output signal of the

sensors used in your CPMS.

(4) The data acquisition and recording system of your CPMS must be able to record values over the entire range specified in paragraph (d)(2) of this section.

(5) The data recording system associated with your CPMS must have

a resolution of one-half of the required overall accuracy of your CPMS, as specified in paragraph (d)(1) of this

section, or better.

(6) Your CPMS must be equipped with an alarm system that will sound when the system detects a decrease in secondary voltage or secondary electrical current below the alarm set point established according to paragraph (d)(7) of this section, and the alarm must be located such that it can be heard by the appropriate plant personnel.

(7) In the initial adjustment of the CPMS, you must establish, at a minimum, the baseline output by adjusting the sensitivity (range) and the averaging period of the device, the alarm set points, and the alarm delay

ime.

(8) You must install each sensor of the CPMS in a location that provides representative measurement of the appropriate parameter over all operating conditions, taking into account the manufacturer's guidelines.

(9) You must perform an initial calibration of your CPMS based on the

procedures specified in the manufacturer's owner's manual.

(10) Your CPMS must be designed to complete a minimum of one cycle of operation for each successive 15-minute period. To have a valid hour of data, you must have at least three of four equally-spaced data values (or at least 75 percent of the total number of values if you collect more than four data values per hour) for that hour (not including startup, shutdown, malfunction, or out of control periods).

(11) You must record valid data from at least 90 percent of the hours during which the affected source or process

operates.

(12) You must record the results of each inspection, calibration, initial validation, and accuracy audit.

(13) At all times, you must maintain your CPMS including, but not limited to, maintaining necessary parts for routine repairs of the CPMS.

- (e) For each new affected furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled by a device other than a fabric filter or an ESP, you must prepare and submit a monitoring plan to EPA or the delegated authority for approval. Each plan must contain the information in paragraphs (e)(1) through (5) of this section.
- (1) A description of the device; (2) Test results collected in accordance with § 63.11452 verifying the performance of the device for reducing PM or metal HAP to the levels required by this subpart;

(3) Operation and maintenance plan for the control device (including a preventative maintenance schedule consistent with the manufacturer's instructions for routine and long-term maintenance) and continuous monitoring system;

(4) A list of operating parameters that will be monitored to maintain continuous compliance with the applicable emission limits; and

(5) Operating parameter limits based on monitoring data collected during the performance test.

§ 63.11454 What are the monitoring requirements for new and existing sources?

(a) For each monitoring system required by this subpart, you must install, calibrate, operate, and maintain the monitoring system according to the manufacturer's specifications and the requirements specified in paragraphs (a)(1) through (7) of this section.

(1) You must install each sensor of your monitoring system in a location that provides representative measurement of the appropriate parameter over all operating conditions, taking into account the manufacturer's

guidelines.
(2) You must perform an initial calibration of your monitoring system based on the manufacturer's

recommendations.

(3) You must use a monitoring system that is designed to complete a minimum of one cycle of operation for each successive 15-minute period.

(4) For each existing affected furnace, you must record the value of the monitored parameter at least every 8 hours. The value can be recorded electronically or manually.

(5) You must record the results of each inspection, calibration, monitoring system maintenance, and corrective action taken to return the monitoring system to normal operation.

(6) At all times, you must maintain your monitoring system including, but not limited to, maintaining necessary parts for routine repairs of the system.

- (7) You must perform the required monitoring whenever the affected furnace meets the conditions specified in paragraph (a)(7)(i) or (ii) of this section.
- (i) The furnace is being charged with one or more of the glass manufacturing metal HAP as raw materials.
- (ii) The furnace is in transition between producing glass that contains one or more of the glass metal HAP as raw materials and glass that does not contain any of the glass manufacturing metal HAP as raw materials. The transition period begins when the furnace is charged with raw materials

that do not contain any of the glass manufacturing metal HAP as raw materials and ends when the furnace begins producing a saleable glass product that does not contain any of the glass manufacturing metal HAP as raw materials.

(b) For each existing furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with an ESP, you must meet the requirements specified in paragraphs (b)(1) or (2) of this section.

(1) You must monitor the secondary voltage and secondary electrical current to each field of the ESP according to the requirements of paragraph (a) of this

ection, or

(2) You must submit a request for alternative monitoring, as described in

paragraph (g) of this section.

(c) For each existing furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with a fabric filter, you must meet the requirements specified in paragraphs (c)(1) or (2) of this section.

(1) You must monitor the inlet temperature to the fabric filter according to the requirements of paragraph (a) of

this section, or

(2) You must submit a request for alternative monitoring, as described in

paragraph (g) of this section.

(d) For each new furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with an ESP, you must monitor the voltage and electrical current to each field of the ESP on a continuous basis using one or more CPMS according to the requirements for CPMS specified in § 63.11453(d).

(e) For each new furnace that is subject to the emission limit specified in Table 1 to this subpart and is controlled with a fabric filter, you must install and operate a bag leak detection system according to the requirements specified

in § 63.11453(c).

(f) For each new or existing furnace that is subject to the emission limit specified in Table 1 to this subpart and is equipped with a control device other than an ESP or fabric filter, you must meet the requirements in § 63.8(f) and submit a request for approval of alternative monitoring methods to the Administrator no later than the submittal date for the Notification of Compliance Status, as specified in § 63.11456(b). The request must contain the information specified in paragraphs (f)(1) through (5) of this section.

 Description of the alternative addon air pollution control device (APCD).

(2) Type of monitoring device or method that will be used, including the sensor type, location, inspection

procedures, quality assurance and quality control (QA/QC) measures, and data recording device.

(3) Operating parameters that will be monitored.

(4) Frequency that the operating parameter values will be measured and recorded

(5) Procedures for inspecting the condition and operation of the control device and monitoring system.

- (g) If you wish to use a monitoring method other than those specified in paragraph (b)(1) or (c)(1) of this section, you must meet the requirements in § 63.8(f) and submit a request for approval of alternative monitoring methods to the Administrator no later than the submittal date for the Notification of Compliance Status, as specified in § 63.11456(b). The request must contain the information specified in paragraphs (g)(1) through (5) of this section.
- (1) Type of monitoring device or method that will be used, including the sensor type, location, inspection procedures, QA/QC measures, and data recording device.

(2) Operating parameters that will be monitored.

(3) Frequency that the operating parameter values will be measured and recorded.

(4) Procedures for inspecting the condition and operation of the monitoring system.

(5) Explanation for how the alternative monitoring method will provide assurance that the emission control device is operating properly.

§ 63.11455 What are the continuous compliance requirements for new and existing sources?

(a) You must be in compliance with the applicable emission limits in this subpart at all times, except during periods of startup, shutdown, and malfunction.

(b) You must always operate and maintain your affected source, including air pollution control and monitoring equipment, according to the provisions

in § 63.6(e)(1)(i).

(c) For each affected furnace that is subject to the emission limit specified in Table 1 to this subpart, you must monitor the performance of the furnace emission control device under the conditions specified in § 63.11454(a)(7) and according to the requirements in §§ 63.6(e)(1) and 63.8(c) and paragraphs (c)(1) through (6) of this section.

(1) For each existing affected furnace that is controlled with an ESP, you must monitor the parameters specified in § 63.11454(b) in accordance with the requirements of § 63.11454(a) or as

specified in your approved alternative monitoring plan.

(2) For each new affected furnace that is controlled with an ESP, you must comply with the monitoring requirements specified in § 63.11454(d) in accordance with the requirements of § 63.11454(a) or as specified in your approved alternative monitoring plan.

(3) For each existing affected furnace that is controlled with a fabric filter, you must monitor the parameter specified in § 63.11454(c) in accordance with the requirements of § 63.11454(a) or as specified in your approved alternative monitoring plan.

(4) For each new affected furnace that is controlled with a fabric filter, you must comply with the monitoring requirements specified in § 63.11454(e) in accordance with the requirements of § 63.11454(a) or as specified in your approved alternative monitoring plan.

(5) For each affected furnace that is controlled with a device other than a fabric filter or ESP, you must comply with the requirements of your approved alternative monitoring plan, as required in § 63.11454(g).

(6) For each monitoring system that is required under this subpart, you must keep the records specified in § 63.11457.

(d) Following the initial inspections, you must perform periodic inspections and maintenance of each affected furnace control device according to the requirements in paragraphs (d)(1) through (4) of this section.

(1) For each fabric filter, you must conduct inspections at least every 12 months according to paragraphs (d)(1)(i) through (iii) of this section.

(i) You must inspect the ductwork and fabric filter unit for leakage.

(ii) You must inspect the interior of the fabric filter for structural integrity and to determine the condition of the fabric filter.

(iii) If an initial inspection is not required, as specified in § 63.11453(b)(3)(i), the first inspection must not be more than 12 months from the last inspection.

(2) For each ESP, you must conduct inspections according to the requirements in paragraphs (d)(2)(i) through (iii) of this section.

(i) You must conduct visual inspections of the system ductwork, housing unit, and hopper for leaks at least every 12 months.

(ii) You must conduct inspections of the interior of the ESP to determine the condition end integrity of corona wires, collection plates, plate rappers, hopper, and air diffuser plates every 24 months.

(iii) If an initial inspection is not required, as specified in § 63.11453(b)(3)(ii), the first inspection must not be more than 24 months from the last inspection.

- (3) You must record the results of each periodic inspection specified in this section in a logbook (written or electronic format), as specified in § 63.11457(c).
- (4) If the results of a required inspection indicate a problem with the operation of the emission control system, you must take immediate corrective action to return the control device to normal operation according to the equipment manufacturer's specifications or instructions.
- (e) For each affected furnace that is subject to the emission limit specified in Table 1 to this subpart and can meet the applicable emission limit without the use of a control device, you must demonstrate continuous compliance by satisfying the applicable recordkeeping requirements specified in § 63.11457.

Notifications and Records

§ 63.11456 What are the notification requirements?

- (a) If you own or operate an affected furnace, as defined in § 63.11449(a), you must submit an Initial Notification in accordance with § 63.9(b) and paragraphs (a)(1) and (2) of this section by the dates specified.
- (1) As specified in § 63.9(b)(2), if you start up your affected source before December 26, 2007, you must submit an Initial Notification not later than April 24, 2008 or within 120 days after your affected source becomes subject to the standard.
- (2) The Initial Notification must include the information specified in § 63.9(b)(2)(i) through (iv).
- (b) You must submit a Notification of Compliance Status in accordance with § 63.9(h) and the requirements in paragraphs (b)(1) and (2) of this section.
- (1) If you own or operate an affected furnace and are required to conduct a performance test, you must submit a Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test, according to § 60.8 or § 63.10(d)(2).
- (2) If you own or operate an affected furnace and satisfy the conditions specified in § 63.11452(a)(2) and are not required to conduct a performance test, you must submit a Notification of Compliance Status, including the results of the previous performance test, before the close of business on the compliance date specified in § 63.11450.

§ 63.11457 What are the recordkeeping requirements?

(a) You must keep the records specified in paragraphs (a)(1) through

(8) of this section.

(1) A copy of any Initial Notification and Notification of Compliance Status that you submitted and all documentation supporting those notifications, according to the requirements in § 63.10(b)(2)(xiv).

.(2) The records specified in § 63.10(b)(2) and (c)(1) through (13).

(3) The records required to show continuous compliance with each emission limit that applies to you, as

specified in § 63.11455.

(4) For each affected source, records of production rate on a process throughput basis (either feed rate to the process unit or discharge rate from the process unit). The production data must include the amount (weight or weight percent) of each ingredient in the batch formulation, including all glass manufacturing metal HAP compounds.

(5) Records of maintenance activities and inspections performed on control devices as specified in §§ 63.11453(b) and 63.11455(d), according to paragraphs (a)(5)(i) through (v) of this

section.

 (i) The date, place, and time of inspections of control device ductwork, interior, and operation.

(ii) Person conducting the inspection.(iii) Technique or method used to

conduct the inspection.

(iv) Control device operating conditions during the time of the inspection.

(v) Results of the inspection and description of any corrective action

taken.

(6) Records of all required monitoring data and supporting information including all calibration and maintenance records.

(7) For each bag leak detection system, the records specified in paragraphs (a)(7)(i) through (iii) of this section.

(i) Records of the bag leak detection

system output;

(ii) Records of bag leak detection system adjustments, including the date and time of the adjustment, the initial bag leak detection system settings, and the final bag leak detection system

settings; and

(iii) The date and time of all bag leak detection system alarms, the time that procedures to determine the cause of the alarm were initiated, the cause of the alarm, an explanation of the actions taken, the date and time the cause of the alarm was alleviated, and whether the alarm was alleviated within 3 hours of the alarm.

(8) Records of any approved alternative monitoring method(s) or test procedure(s).

(b) Your records must be in a form suitable and readily available for expeditious review, according to

§ 63.10(b)(1).

(c) You must record the results of each inspection and maintenance action in a logbook (written or electronic format). You must keep the logbook onsite and make the logbook available to the permitting authority upon request.

(d) As specified in § 63.10(b)(1), you must keep each record for a minimum of 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to § 63.10(b)(1). You may keep the records offsite for the remaining three years.

Other Requirements and Information

§ 63.11458 What General Provisions apply to this subpart?

You must satisfy the requirements of the General Provisions in 40 CFR part 63, subpart A, as specified in Table 2 to this subpart.

§ 63.11459 What definitions apply to this subpart?

Terms used in this subpert are defined in the Clean Air Act, in § 63.2, and in this section as follows:

Air pollution control device (APCD) means any equipment that reduces the quantity of a pollutant that is emitted to the air.

Continuous furnace means a glass manufacturing furnace that operates continuously except during periods of maintenance, malfunction, control device installation, reconstruction, or rebuilding.

Cullet means recycled glass that is mixed with raw materials and charged to a glass melting furnace to produce glass. Cullet is not considered to be a raw material for the purposes of this

subpart.

Electrostatic precipitator (ESP) means an APCD that removes PM from an exhaust gas stream by applying an electrical charge to particles in the gas stream and collecting the charged particles on plates carrying the opposite electrical charge.

Fabric filter means an APCD used to capture PM by filtering a gas stream

through filter media.

Furnace stack means a conduit or conveyance through which emissions from the furnace melter are released to the atmosphere. Glass manufacturing metal HAP
means an oxide or other compound of
any of the following metals included in
the list of urban HAP for the Integrated
Urban Air Toxics Strategy and for which
Glass Manufacturing was listed as an
area source category: arsenic, cadmium,
chromium, lead, manganese, and nickel.

Glass melting furnace means a unit comprising a refractory-lined vessel in which raw materials are charged and melted at high temperature to produce

molten glass.

Identical furnaces means two or more furnaces that are identical in design, including manufacturer, dimensions, production capacity, charging method, operating temperature, fuel type, burner configuration, and exhaust system

configuration and design.

Particulate matter (PM) means, for
purposes of this subpart, emissions of
PM that serve as a measure of filterable
particulate emissions, as measured by
Methods 5 or 17 (40 CFR part 60,
appendices A-3 and A-6), and as a
surrogate for glass manufacturing metal
HAP compounds contained in the PM
including, but not limited to, arsenic,

cadmium, chromium, lead, mangenese, and nickel.

Plant site means all contiguous or adjoining property that is under common control, including properties that are separated only by a road or other public right-of-way. Common control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, or any combination thereof.

Raw material means minerals, such as silica sand, limestone, and dolomite; inorganic chemical compounds, such as soda ash (sodium carbonate), salt cake (sodium sulfate), and potash (potassium carbonate); metal oxides and other metal-based compounds, such as lead oxide, chromium oxide, and sodium antimonate; metal ores, such as chromite and pyrolusite; and other substances that are intentionally added to a glass manufacturing batch and melted in a glass melting furnace to produce glass. Metals that are naturallyoccurring trace constituents or contaminants of other substances are not considered to be raw materials. Cullet and material that is recovered ... from a furnace control device for recycling into the glass formulation are not considered to be raw materials for the purposes of this subpart.

Research and development process unit means a process unit whose purpose is to conduct research and development for new processes and products and is not engaged in the manufacture of products for commer sale, except in a de minimis manner.

§ 63.11460 Who implements and enforces this subpart?

(a) This subpart can be implemented and enforced by the U.S. EPA, or a delegated authority such as your State, local, or tribal agency. If the U.S. EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency has the authority to implement and enforce this subpart. You should contact your U.S. EPA Regional Office to find out if this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraphs (b)(1) through (4) of this section are retained by the Administrator of the U.S. EPA and are not transferred to the State, local, or tribal agency.

(1) Approval of alternatives to the applicability requirements in §§ 63.11448 and 63.11449, the compliance date requirements in § 63.11450, and the emission limits specified in § 63.11451.

(2) Approval of a major change to test methods under § 63.7(e)(2)(ii) and (f) and as defined in § 63.90.

(3) Approval of major alternatives to monitoring under § 63.8(f) and as defined in § 63.90.

(4) Approval of major alternatives to recordkeeping under § 63.10(f) and as defined in § 63.90.

§63.11461 [Reserved]

Tables to Subpart SSSSS of Part 63

As required in § 63.11451, you must comply with each emission limit that applies to you according to the following table:

TABLE 1 TO SUBPART SSSSSS OF PART 63-EMISSION LIMITS

For each	You must meet one of the following emission limits
 New or existing glass melting furnace that produces glass at an en- nual rate of at least 45 Mg/yr (50 tpy) AND is charged with com- pounds of arsenic, cadmium, chromium, manganese, lead, or nickel as raw materials. 	must not exceed 0.1 gram per kilogram (g/kg) (0.2 pound per ton (lb/

As stated in § 63.11458, you must comply with the requirements of the NESHAP General Provisions (40 CFR part 63, subpart A), as shown in the following table:

TABLE 2 TO SUBPART SSSSSS OF PART 63—APPLICABILITY OF GENERAL PROVISIONS TO SUBPART SSSSSS

Citation	Subject
§ 63.1(a), (b), (c)(1), (c)(2), (c)(5), (e)	Applicability. Definitions. Units and Abbreviations. Prohibited Activities. Construction/Reconstruction. Compliance with Standards and Maintenance Requirements. Performance Testing Requirements. Monitoring Requirements. Notification Requirements. Recordkeeping and Reporting Requirements. Documentation for Initial Notification and Notification of Compliance Status. State Authority and Delegations. Addresses. Incorporations by Reference. Availability of Information. Performance Track Provisions.

■ 5. Part 63 is amended by adding subpart TTTTT to read as follows:

Subpart TTTTT—National Emission Standards for Hazardous Air Pollutants for Secondary Nonferrous Metals Processing Area Sources

Applicability and Compliance Dates

63.11462 Am I subject to this subpart?
63.11463 What parts of my plant does this subpart cover?

63.11464 What are my compliance dates?

Standards, Compliance, and Monitoring Requirements

- 63.11465 What are the standards for new and existing sources?
- 63.11466 What are the performance test requirements for new and existing sources?
- 63.11467 What are the initial compliance demonstration requirements for new and existing sources?
- 63.11468 What are the monitoring requirements for new and existing sources?
- 63.11469 What are the notification requirements?

63.11470 What are the recordkeeping requirements?

Other Requirements and Information

- 63.11471 What General Provisions apply to this subpart?
- 63.11472 What definitions apply to this subpart?
- 69.11473 Who implements and enforces this subpart?

63.11474 [Reserved]

Tables to Subpart TTTTTT of Part 63

Table 1 to Subpart TTTTTT of Part 63—Applicability of General Proviside5 to Subpart TTTTTT

What Is The Compliance Date?

- Existing Sources: December 28, 2009.
- New Sources: Upon initial startup.

What Are The Permitting Requirements?

Affected facilities must obtain a Title V permit.

What Are The Impacts?

Three glass plants are expected to have to add controls to comply with the rule.

What Records Are Required?

Reporting:

- Initial notification and notification of compilance status (may be combined), due 120 days after promulgation date
- Initial notification informs EPA that the facility is subject to the standards. Notification of compliance status provides certification of compliance with standards.
- No ongoing compliance reports to be required beyond Title V Requirements.

Recordkeeping:

- Records to include copies of notifications submitted to EPA, glass production data, and records of monitoring and inspections.
- Records to be maintained in a form suitable and readily available for expeditious review.

You can also contact your Regional EPA air toxics office at the following numbers:

Address	States	Website/ Phone Number
Region 1 1 Congress Street Suite 1100 Boston, MA 02114-2023	CT, MA, ME, NH, RI, VT	www.epa.gov/region1 (888) 372-7341 (617) 918-1650
Region 2 290 Broadway New York, NY 10007-1866	NJ, NY. PR, VI	www.epa.gov/reglon2 (212) 637-4023
Region 3 1650 Arch Street Philadelphia, PA 19103-2029	DE, MD, PA, VA, WV, DC	WWW.epa.gov/region3 (800) 241-1754 (215) 814-2196
Region 4 Atlanta Federal Center 61 Forsyth Street, SW Allanta, GA 30303-8960	FL, NC, SC, KY, TN, GA, AL, MS	www.epa.gov/region4 (404) 562-9131
Region 5 77 West Jackson Blvd Chicago, IL 60604-3507	IL, IN, MI, WI, MN, OH	www.epa.gov/region5 (312) 353-3575 (312) 353-4145 (312) 888-3850
Region 6 1445 Ross Avenue Sulte 1200 Dallas, TX 75202-2733	AR, LA, NM, OK, TX	www.epa.gov/region6 (800) 621-8431* 214-665-7171
Region 7 901 North Fifth Street Kansas City, KS 66101	IA, KS, MO, NE	www.epa.gov/region7 (800) 223-0425 (913) 551-7588
Region 8 1595 Wynkoap St. Derver, CO 80202-1129	CO, MT, ND, SD, UT, WY	www.epa.gov/region8 (800) 227-8917* (303) 312-6460
Region 9 75 Hawfhorne Street San Francisco, CA 94105	CA, AZ, HI, NV, GU, AS, MP	www.epa.gov/region9 (415) 744-1197
Region 10 1200 Sixth Ave Seattle, WA 98101	AK, ID, WA, OR	www.epa.gov/region10 (800) 424-4372* (206) 553-2117

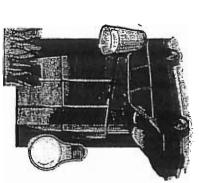
*For sources within the region only.

For More Information

Copies of the rule and other materials are located at : www.epa.gov/ttn/atw/area/arearules.html

United States Environmental Protection Agency

December 2007


www.epa.gov/ttn/atw/eparules.html

Office of Air Quality Planning & Standards (El 43-02)

XEY X

Summary of Regulations Controlling Air Emissions for the

GLASS MANUFACTURING INDUSTRY

NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS NESHAP (SUBPART SSSSSS)

LOXABOV TO

GLASS MANUFACTURING (SUBPART SSSSS)

What Is An Area Source?

Any source that is not a major source. (A major source is a facility that emits, or has the potential to emit in the absence of controls, at least 10 tons per year (TPY) of individual hazardous air pollutants (HAP) or 25 TPY of combined HAP.)

Who Does This Rule Apply To?

Facilities with glass manufacturing furnaces producing at least 50 tons of glass per year.

Who Is Subject To The Rule?

Glass manufacturing plants with continuous furnaces that process urban HAP metals (As, Cd, Cr, Pb, Mn, Ni) as raw materials (not including trace materials in non-HAP raw materials such as sand).

What Am I Required To Do?

All affected sources must meet one of two emissions limits. New and existing sources have different monitoring requirements.

The charts on the following pages explain, in detail, how all affected glass manufacturers can comply with the rule.

Initial testing requirement:

One-time performance test on each furnace unless the furnace has been tested in the last 5 years and the previous test demonstrated compliance.

Monitoring Requirements	ESP	ESP monitoring of the secondary voltage and secondary electrical current to each field of the ESP; measure every 15 minutes and record every 8 hours	Install CPMS to measure and record the secondary voltage and secondary current to each field of the ESP	Annual inspections of furnace control devices	Can submit a request for alternative monitoring under §60.8 or §63.8(f)
Mo	Baghouse	Inlet temperature monitoring: record every 15 minutes and record every 8 hours	Leak detectors	Annual inspe	Can submit a request for
		Existing	wəИ	ontces	S IIA

Emission Limits	Limits
Pollutant	Emission Limit*
Particulate Matter	0.2 lb/ton (0.1 g/kg)
Combined Urban HAP (As, Cd, Cr, Pb, Mn, Ni)	0.02 lb/ton (0.01 g/kg)

* Pounds emitted per ton of glass produced. (Grams emitted per kilogram of glass produced.)

